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ABSTRACT 

Objective: The objective in the present investigation is to study the effect of magnetic field on thermal 

convection of an Oldroydian viscoelastic fluid through a Brinkman porous medium. 

Methods: The normal mode method is used to obtain the dispersion relation.  

Conclusions: For the case of stationary convection, Oldroydian viscoelastic fluid behaves like an 

ordinary Newtonian fluid and medium permeability and medium porosity have destabilizing effects on 

the system whereas the magnetic field and Darcy-Brinkman number have stabilizing effects on the 

system. It is also found that the modes may be oscillatory and non-oscillatory and the principle of 

exchange of stabilities is valid under certain condition. 

Keywords: Stability, Magnetic Field, Brinkman Porous Medium.  

 
INTRODUCTION 

The problem of the onset of convection in a 

horizontal layer of Newtonian fluid heated from 

below under varying assumptions of 

hydrodynamics and hydromagnetics has been 

discussed in detail by Chandrasekhar (1981).A 

porous medium is defined as a material consisting 

of a solid matrix with an interconnected void.A 

comprehensive and detailed study of thermal 

convection through various porous mediums has 

been given by Nield andBejan (2006). Tissues can 

be treated as a porous medium as it is composed of 

dispersed cells separated by connective voids 

which allow for flow of nutrients, minerals, etc. 

There are several evidences, both theoretical and 

experimental, which suggest that the Darcy’s 

equation gives inadequate resultsof the 

hydrodynamic conditions particularly near the 

boundaries of a porous medium. The Darcy-

Brinkman equation, which takes into account the 

boundary effects, has been employed in recent 

years in biomedical hydrodynamic studies (Khaled 

and Vafai, 2003). 

An experimental demonstration by Toms and 

Strawbridge (1953) reveals that a dilute solution of 

methyl methacrylate in n-butyl acetate behaves in 

accordance with the theoretical model of Oldroyd 

fluid (1958).Sharma (1975) studied the stability of 

a layer of an electrically conducting Oldroyd fluid 

in the presence of a magnetic field and found that 

the magnetic field has a stabilizing 

influence.Sharma and Sunil (1994) considered the 

thermal instability of an Oldroydian viscoelastic 

fluid permeated with suspended particles in 

hydromagnetics in a porous medium and 

concluded that for the case of stationary 

convection, magnetic field has a stabilizing effect 

whereas medium permeability and suspended 

particles have destabilizing effects on the system. 

Kumar et al. (2013) investigated theoretically the 

influences of dust particles, variable gravity and 

magnetic field of an Oldroydian Viscoelastic fluid 

through a Brinkman Porous Medium. 
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The purpose of the present study is to investigate 

the problem of the onset of stability of an 

Oldroydian viscoelastic fluid through a Brinkman 

porous medium in hydromagnetics. 

 

RESEARCH METHODOLOGY 

The following Research Methodology is adopted 

for the proposed Research paper: 

 Identification of the problem 

 Collection and study of related literature 

 Mathematical formulation of the problem 

 Stability analysis and use of normal mode 

method 

 Interpretation of results 

 Conclusion 

 

FORMULATION OF THE PROBLEM 

Consider an infinite horizontal layer of an Oldroydian viscoelastic fluid bounded by the planes z=0 and 

z=d in a porous medium of porosityand medium permeability 1k . The fluid layer is acted on by a 

uniform vertical magnetic field H (0, 0, H). The governing equations of motion and continuity for 

anOldroydian viscoelastic fluid are defined as: 
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Where in the above equations, 0 , , , ,e qand    iX denote, respectively, the density of fluid, viscosity, 

effective viscosity, magnetic permeability, velocity of pure fluid and the gravitational acceleration term. 

The energy equation is defined as: 
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(3) 

Where , , ,s s vc c T and k  denote, respectively, the density of solid material, heat capacity of solid 

material, the specific heat at constant volume, the temperature and the thermal conductivity. 

The Maxwell’s equation yields 
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   (4) 

and ,0. H    (5) 

Where   denote the electrical resistivity.  

The equation of state is  

 0 01 T T          
(6) 

The steady state solution corresponding to the system of equations (1)-(6) are defined as:
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Let the initial state solutions described by equations (7) be slightly perturbed. We assume that q (u,v,w), 

θ, p ,  and  , ,x y zh h h h denote, respectively, the perturbation in fluid velocity q(0,0,0), temperature 

T, pressure p, density   and magnetic field H.The change in density   caused by perturbation θ in 

temperature, is given by 

0      (8) 

The governing linearized perturbation equations are defined as: 
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respectively, the kinematic viscosity, the effective kinematic viscosity, the co-efficient of thermometric 

conductivity, unit vertical vector and fluid velocity and  
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Eliminating p  among the equations (9)- (13) andconsidering a solution of the form: 
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Where xk , 
yk are the wave numbers along x and y directions, respectively and  222

yx kkk   is the 

resultant wave number and n is the frequency of the harmonic disturbanceand also making the 

substitutions of the non-dimensional quantities of the 

form
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We obtain the non-dimensional form of the 

equations (9)-(13) (after dropping the asterisk for convenience) as: 
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Eliminating and K from equations (15)- (19), we obtain: 
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Where, in the above equation (20),
4

0g d
R
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 , is the thermal Rayleigh number and

2 2

04

eH d
Q
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the Chandrasekhar number. 

The boundary conditions are defined as: 

W = D2W = DZ = DK = hz= 0 on z = 0 and 1.   (21) 

Equation (20) together with the boundary condition (21) constitutes an eigen-value problem for the 

present problem. It is evident that when 1 0F   the system reduces to a Maxwell fluid whereas 

for 1 20 0F and F  , the system reduces to that for an ordinary viscous fluid. 

 

LINEAR STABILITY ANALYSIS AND SOLUTION OF THE EIGEN-VALUE PROBLEM 

Following the boundary conditions (21), a proper solution for W belonging to the lowest mode can be 

defined as: 

0 sinW W z    (22) 

Where W0   is a constant.                                                  

Substituting equation (22) in equation (20) and assuming the followings: 
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 Equation (23) is required dispersion relation including the effects of magnetic field and medium 

permeability on thermal instability of an Oldroydvisco-elastic fluid through a Brinkman porous medium.

 

 

THE STATIONARY CONVECTION  

For the case of stationary convection, the marginal state will be characterized by substituting 0  in 

equation (23) and obtain the eigenvalue relationshipof the form:               
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Equation (24) shows that for the case of stationary convection Oldroydianvisco-elastic fluid behaves like 

an ordinary Newtonian fluid. 

Minimizing equation (24) with respect to x , givesa third order equation in x of the 
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By putting the value of critical wave number cx  obtained from equation (25), in equation (24), we can 

obtain the values of critical Rayleigh number for the case of stationary instability. 

To investigate the effects of various parameters like magnetic field, medium permeability, Darcy-

Brinkman number and medium porosity, we examine the behaviour of 
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PRINCIPAL OF EXCHANGE OF STABILITIES AND OSCILLATORY MODES 

In this section, we will obtain the conditions under which the principle of exchange of stabilities is valid 

and the possibility of oscillatory modes, if any, for Oldroydian viscoelastic fluid under the effect of 

magnetic field through a Brinkman porous medium.  

To do this, we multiply equation (15) by W
*
 (the complex conjugate of W), integrating over the range of 

z and making use of equations (17) and (18) with the help of boundary conditions (21), we obtain 
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All the above integrals I1-I6 are positive definite.  

Putting 0i  , where 0  is real, into equation (30), and equating the imaginary part, we obtain 
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Equation (31) implies that 0 0   or 0 0   which indicates that the modes may be non oscillatory or 

oscillatory. The oscillatory modes are introduced due to presence of magnetic field, visco-elasticity, 

medium permeability and Darcy-Brinkman parameter.

 

In the absence of magnetic field, equation (31) reduces to 

 

 
 2 1

0 1 1 22 2

2 0

1
0

1
A

l

F F
I I D I

F P




   
    

    

 

(32)

 
It is evident from equation (32) that if 2 1F F then the term inside the bracket is positive which implies 

that 0 0  , thus the modes are non-oscillatory and the principle of exchange of stabilities is satisfied. 

 

CONCLUSION 

The thermal convection problem of an Oldroydian 

viscoelastic fluid in the presence of vertical 

magnetic field is considered through a Brinkman 

porous medium. For the case of stationary 

convection, it is found that the Oldroydian fluid 

behaves like an ordinary Newtonian fluid and the 

effects of medium porosity and medium 

permeability is to hasten the onset of thermal 

convection whereas magnetic field and Darcy-
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Brinkman number have a stabilizing effect on the 

system because their effect is to postpone the onset 

of thermal instability.  

The oscillatory modes are introduced due to 

presence of magnetic field, visco-elasticity, 

medium permeability and Darcy-Brinkman 

parameter. The principle of exchange of stabilities 

is found to hold under certain conditions. The 

present investigation would be relevant in the 

study of some stability problems of polymer 

solutions and Oldroydian viscoelastic fluids. 

 

ACKNOWLEDGEMENT 

Authors acknowledge theimmense help received 

from the scholars whose articles are cited and 

included inreferences of this manuscript. The 

authors are also grateful to authors / editors / 

publishers of all those articles, journals and books 

from where the literature for this article has been 

reviewed and discussed. 

 

REFERENCES 

1. Chandrasekhar, S.C. (1981). Hydrodynamic 

and Hydromagnetic Stability, Dover 

Publication, New York. 

2. Khaled, A.R.A. and Vafai, K. (2003). The role 

of porous media in modeling flow and heat 

transfer in biological tissues. Int. J. Heat Mass 

Transfer, Vol.46, pp.4989-5003. 

3. Kumar, K., Singh, V. and Sharma, S. (2013). 

Stability of an Oldroydian Viscoelastic Fluid 

Permeated with Suspended Particles through a 

Brinkman Porous Medium with variable 

gravity field in Hydromagnetics, American 

Journal of fluid Dynamics, Vol. 3, 3, pp. 58-

66. doi: 10.5923/j.ajfd.20130303.02 

4. Nield, D.A. and Bejan, A. (2006). Convection 

in porous media. Springer, New-York. 

5. Oldroyd J.G.  (1958). Non-Newtonian effects 

in steady motion of some idealized elastic-

viscous liquids, Proc. Royal Soc. London, A 

245, pp. 278-297. 

6. Sharma R.C. (1975). Thermal instability in a 

viscoelastic fluid in hydromagnetics, Acta 

Phys. Hung., Vol. 38, pp. 293-298. 

7. Sharma R.C. and Sunil. (1994). Thermal 

instability of Oldroydian viscoelastic fluid 

with suspended particles in hydromagnetics in 

porous medium, Polymer Plastics Technology 

and Engineering, Vol. 33, Issue 3, pp. 323-

339. 

8. Toms B.A. and Strawbridge D.J. (1953). 

Elastic and viscous properties of dilute 

solutions of polymethyl methacrylate in 

organic liquids, Trans. Faraday Soc., Vol. 49, 

pp. 1225-1232. 

 


