
 Int J Cur Res Rev   | Vol 14 • Issue 11 • June 2022 37

Factors Affecting the Production of Astaxanthin in 
the Microalgae Haematococcus pluvialis: A Review
Muhsinin Soni1*, Aligita Widhya1, Rostinawati Tina2, Levita Jutti3

1Faculty of Phramacy, Bhakti Kencana University, Jl. Soekarno Hatta N0.754, Bandung, West Java, Indonesia 40286, India; 2Department of Biology 
Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang km.21, Sumedang, West Java, Indonesia 45363, India; 
3Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang km.21, Sumed-
ang, West Java, Indonesia 45363, India.

Corresponding Author:
Muhsinin Soni, Jl. Soekarno Hatta N0.754, Bandung, West Java, Indonesia 40286, India.
Mobile: +6281320742590; E-mail: soni.muhsinin@bku.ac.id

ISSN: 2231-2196 (Print) ISSN: 0975-5241 (Online)

Received: 14.03.2022 Revised: 09.04.2022 Accepted: 05.05.2022 Published: 03.06.2022

INTRODUCTION

Astaxanthin (3,3’-dihydroxy-β-carotene-4,4’dione) is a sec-
ondary metabolite belonging to the carotenoid group.1–3 Asta-
xanthin has a high value in the pharmaceutical, nutraceutical, 
and cosmetic fields because of its potent antioxidant poten-
tial with an IC50 value of 39.1 ± 1.14 ppm.4 The antioxidant 
activity produced by astaxanthin is 65 times higher than that 
of vitamin C, 54 times more powerful than β-carotene, 14 
times higher than vitamin E, and 20 times stronger than its 
synthetic form.5 Due to its potent antioxidant activity, asta-
xanthin can be used to treat several degenerative diseases 
caused by free radicals.6

Various sources of astaxanthin in nature can be obtained from 
several microorganisms such as the fungus Phaffia rhodozy-
ma, microalgae Chlorella zofingiensis, and Haematococcus 
pluvialis.7–9 However, of these microorganisms, H. pluvialis 
is known to show the highest astaxanthin accumulation ca-
pacity of up to 4% dry weight under stress conditions.10,11

The market price of astaxanthin also varies, ranging from 
$2,500 to 7,000/kg. In 2014, the global market potential of 
astaxanthin was approximately 280 tonnes for $400 million. 
However, more than 95% of the market is synthetic astaxan-
thin types that are sourced from petrochemicals. This hap-

pens because the production cost of synthetic astaxanthin 
is relatively cheaper than natural astaxanthin obtained from 
microalgae.12 This synthetic type of astaxanthin has 20 times 
lower antioxidant power than the natural type.5 In addition, 
related to safety issues, synthetic astaxanthin types are still 
not allowed to be consumed by humans due to differences in 
stereochemical form with natural type. Therefore, its use is 
only permitted as feed and dye for aquaculture organisms.10

Astaxanthin production can be done by various methods, 
including culture, chemical synthesis, and genetic engi-
neering. The culture method can be done by adding stress 
induction to microalgae because it is known that H. pluvi-
alis is a microalgae that can accumulate astaxanthin under 
stress. These stress conditions can be caused by several 
factors, including light stress,13,14 nutritional deficiency,15 
salinity stress,16,17 the addition of Fe2+,18,19 and so on. In 
addition, another method is chemical synthesis using as-
ta-C15-triarylphosphonium salt and C10-dialdehyde with 
the Wittig reaction,20 which produces synthetic astaxan-
thin with antioxidant activity 20 times lower than natu-
ral astaxanthin. Then another method, genetic engineer-
ing, in several research journals has been widely reported 
overproduction of astaxanthin in several microorganisms 
such as fungi and bacteria.21 This review article contains 
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biological and physiological conditions, biochemical con-
tent, and methods of producing astaxanthin from H. plu-
vialis by culture and genetic engineering.

Biology of H. pluvialis

a. Taxonomy
H. pluvialisis a biflagellate unicellular microalgae that lives 
in freshwater. According to Lorenz (1999),22 the classifica-
tion of H. pluvialis microalgae is as follows:

Kingdom Plantae 

Divisio Chlorophyta 

Classis Chlorophyceae

Ordo Volvocales 

Familia Haematococcaceae

Genus Haematococcus

Species Haematococcus pluvialis

b. Habitat
The habitat of H. pluvialisis spread evenly in the world, es-
pecially in temperate areas. This microalgae has been isolat-
ed in Europe, Africa, North America, and Himachal Pradeslv 
India.23,24 H. pluvialis is also found in various environmental 
conditions with extreme climates, which may be lethal to 
other types of microalgae. This is because H. pluvialis can 
defend itself by forming encysts (cells become closed with 
a thick membrane) quickly when under stress and extreme 
conditions.25

c. Morphology
The cell structure of H. pluvialis is similar to that of some 
groups of volvocalean green microalgae. The life cycle of 
H. pluvialis consists of four phases with different cellular 
morphology, namely macrozooid (zoospore), microzooid, 
palmella, and hematocyst (aplanospore).10,26 The following is 
the morphology of H. pluvialis microalgae with descriptions 
(A) Motile macrozoid cells (zoospores) with a size <10 m or 
20 m, (B) Microzoid cells, (C) Palmella cells with accumula-
tion of astaxanthin, (D) Hematocyst cells with accumulation 
of astaxanthin with size > 50 m.

The macrozoid, microzoid, and palmella phases are also 
known as the green vegetative phase. The microzoid phase 
(zoospore) is when the cell has a spherical, elliptical or pear-
shaped shape with two flagella of the same length and ap-
pears anteriorly and has cup-shaped chloroplasts (Figure 
1A). In this phase, with the optimum environment, flagel-
lated cells undergo rapid division and growth, producing 2-8 
daughter cells.

Figure 1: Morphology of H. pluvialis.
Figure adapted from Shah et al. (2016),27 which is licensed 
under the Creative Commons Attribution License.

However, suppose the environmental conditions are unfa-
vorable (stress). In that case, the cell will remove the fla-
gella and begin to expand in size by forming an amorphous 
structure layered on the inside of the extracellular matrix and 
develops into non-motile cells called palmella (Figure 1B).28 
In this phase, the H. pluvialis cell wall thickens and consists 
of three layers. The first layer is a trilaminar layer containing 
materials such as sporopollenin, an algaenan that is resistant 
to acetolysis.29 According to Kim et al. (2016),30 the content 
of algaenans in the cell walls of H. pluvialis microalgae will 
inhibit the extraction process using several solvents such as 
acetone, methanol, dichloromethane. The second and third 
layers contain mannose and cellulose.28,31,32

The hematocyst phase was also referred to as the non-motile 
phase with astaxanthin accumulation (Fig. 1C and 1D). This 
phase occurs when the state of stress continues. This stress 
state can be in the form of nutritional deficiency, light stress 
with a certain intensity, salinity stress, and the addition of 
certain chemicals that can induce stress. Under these condi-
tions, the palmella will turn into an asexual form or hema-
tocyst (aplanospore). Mature hematocysts accumulate large 
amounts of carotenoids, especially astaxanthin, stored in li-
pid droplets in the cytoplasm.28

Figure 2: Illustration of the life cycle of H. pluvialis. 
Figure adapted from Wayama et al. (2013),33 which is licensed 
under the Creative Commons Attribution License.

After the environmental conditions return to normal and op-
timal, the hematocyst (aplanospore) will germinate again to 
form a microzoid (zoospore) which will re-initiate the start 
of a new vegetative growth cycle (Figure 2).33
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Biochemical Content
The cellular content of the H. pluvialis microalgae varies be-
tween the green phase and the red phase due to its unique 
life cycle. The biochemical range of H. pluvialis in the green 
phase and red phase according to 34 is listed in Table 1.

Table 1: Biochemical content of H. pluvialis

Content (% Dry Weight) Green Phase Red Phase

Protein 29-45 17-25

Lipids (% total) 20-25 32-37

•	 Neutral Lipids 59 51.9-53.5

•	 Phospholipids 23.7 20.6-21.1

•	 Glycolipids 11.5 25.7-26.5

Carbohydrate 15-17 36-40

Carotenoids (% total) 0.5 2-5

•	 Neoxanthin 8.3 -

•	 Violaxanthin 12.5 -

•	 β-carotene 16.7 1.0

•	 Lutein 56.3 0.5

•	 Zeaxanthin 6.3 -

•	 Astaxanthin (including 
ester)

- 81.2

•	 Adonixanthin - 0.4

•	 Canthaxanthin - 5.1

•	 Echinenone - 0.2

•	 Chlorophyll 1.5-2 0

Description (-): no data reported
According to Table 1, H. pluvialis produced 81.2% Astax-
anthin (including ester) in the red phase. This amount is the 
highest compared to primary metabolites (Proteins, Lipids, 
Carbohydrates) and other carotenoid compounds. The green 
phase does not produce astaxanthin. H. pluvialis enters a log-
arithmic phase (growth phase) and produces more primary 
metabolites during this phase.

Astaxanthin

a. Sources of Astaxanthin
Natural sources of astaxanthin are found in several organ-
isms, including algae, bacteria, fungi, salmon, shrimp, lob-
ster.35 But for the mass production of astaxanthin, microor-
ganisms such as fungi and microalgae are more widely used 
because of their rapid growth. Some of the natural astaxan-
thin-producing microorganisms are listed in Table 2.

Table 2: Sources of Astaxanthin
Sources Astaxan-

thin (% Dry 
Weight)

Reference

Chlorophyceae
Haematococcus pluvialis
Botryococcus braunii
Neochloris wimmeri
Chlorella zofingiensis

3.8
0.4
0.6

0.001

36
36
37
38

Ulvophyceae
Enteromorpha intestinalis
Ulva lactuca

0.02
0.01

39
39

Florideophyceae
Catenella repens 0.02 39

Alphaproteobacteria
Paracoccus carotinifaciens 
(NITE SD 00017)

2.2 40

Tremellomycetes
Xanthophyllomyces den-
drorhous (JH)

0.5 41

Labyrinthulomycetes
Thraustochytrium sp. CHN-3 
(FERM P-18556)

0.2 42

According to Table 2, H. pluvialis is the microalgae that pro-
duce the most significant amount of astaxanthin (up to 3.8%) 
(excluding esters). HPLC and LC-MS methods for analyz-
ing astaxanthin compounds. The biomass of H. pluvialis was 
homogenized and extracted with acetone several times. The 
extracts were combined, evaporated with a rotavopar, and 
then redissolved in acetone.

b. Astaxanthin Biosynthesis
Astaxanthin biosynthesis in H. pluvialis is a complex se-
ries of processes that occur under stress conditions along 
with triacylglycerol (TAG) accumulation. Both compounds 
are deposited in lipid droplets in the cytosol during the red 
phase. The formation of astaxanthin begins with the glyco-
lysis process, which produces pyruvate and glyceraldehyde-
3-phosphate (G3P). Furthermore, pyruvate, together with 
glyceraldehyde-3-phosphate (G3P), will form the compound 
Isopentenyl Pyrophosphate (IPP) as the primary precursor in 
the synthesis of carotenoids.

Astaxanthin belongs to the carotenoid group, is one of the 
C40 tetraterpenes synthesized from the isoprene unit Isopen-
tenyl Pyrophosphate (IPP). In principle, IPP synthesis can 
originate from two different pathways: the mevalonate path-
way (MVA) occurring in the cytosol and the non-mevalonate 
pathway (MEP) or the 1-deoxy-D-xylulose-5-phosphate 
(DOXP) pathway occurring in chloroplasts.43–45

In H. pluvialis, IPP is synthesized from the non-mevalonate 
pathway. Furthermore, IPP undergoes isomerization to di-
methylallyl diphosphate (DMAPP). Some research results 
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indicate that the conversion is catalyzed by the enzyme iso-
pentenyl pyrophosphate isomerase (IPI) encoded by the ipi1 
and ipi2 genes during astaxanthin accumulation.2 However, 
the results of another study also stated that neither of the ipi1 
and ipi2 genes was increased as long as H. pluvialis cells ac-
cumulated astaxanthin.46 Another study reported that another 
enzyme with similar activity, namely 4-hydroxy-3-methylb-
ut-2-enyl diphosphate reductase (HDR), was more likely to 
be responsible for catalyzing the intermediate conversion of 
IPP to DMAPP.46–48

Elongation of the isoprene chain begins with a DMAPP mol-
ecule, and the addition of three IPP molecules is catalyzed 
by the enzyme geranyl-geranyl pyrophosphate synthase 
(GGPS).49,50 The next step of this process is the formation of 
the compound C20 geranyl-geranyl pyrophosphate (GGPP). 
GGPP is converted to C40-phytoene as a precursor of asta-
xanthin and other carotenoids with the help of the phytoene 
synthase (PSY) enzyme encoded by the psy gene coupled 
with the head-to-tail condensation of two GGPP molecules.50

Figure 3: Biosynthesis of astaxanthin in H. pluvialis27

The formation of lycopene takes place through four desatu-
ration steps catalyzed by two enzymes, namely the enzyme 
phytoene desaturase (PDS), which is encoded by the pds 
gene and z-carotene desaturase (ZDS), which is encoded by 
the zds gene.51,52 The desaturation reaction will increase the 
number of conjugated double bonds in the carbon chain to 
form chromophore groups in carotenoids, change the color-
less molecule of phytoene to the lycopene, and produce a red 
color.50

Lycopene undergoes cyclization catalyzed by the enzyme 
lycopene cyclase (LCY-e and LCY b), which is encoded 
by the lcy gene. Cyclization of carotenoid biosynthesis in 
most organisms produces α-carotene (a precursor to lutein) 
and β-carotene (a precursor to carotenoids including astax-
anthin). The last two oxygenation processes are catalyzed 
by the β -carotene ketolase (BKT) enzyme encoded by the 
bkt gene, and the β-carotene hydroxylase (CrtR-b or BKH) 
enzymes encoded by the bkh or crtR-b genes are the final 
stages of astaxanthin synthesis.53–55

c. Pharmacological Activity of Astaxanthin
Astaxanthin as a nutraceutical has a variety of pharmacologi-
cal activities, including those in Table 3.

Table 3: Pharmacological Activity of Astaxanthin
Activity Description Results Reference

Antioxidant Astaxanthin is a 
carotenoid that 
exhibits significant 
antioxidant activ-
ity. The purpose 
of this study was 
to determine the 
level of oxidative 
stress caused in 
human cells by a 
Fatty Acids mixture 
and the potential 
protective effect of 
Astaxanthin.

Astaxanthin 
can protect 
human 
lymphocytes 
from oxida-
tive stress 
caused by 
a fatty acid 
mixture, 
most likely by 
blenching/
quenching 
free radical 
production.

56

Anticancer AGS, KATO-III, 
MKN-45, and SNU-
1 human gastric 
cancer cell lines 
were treated with 
different doses 
of astaxanthin. 
Immunoblotting, 
cell viability test-
ing, and cell cycle 
analysis were all 
conducted.

In vitro 
studies on 
KATO-III 
and SNU-1, 
gastric cancer 
cells showed 
inhibition of 
cancer cell 
proliferation

29

Antidiabetic The effect of 
astaxanthin on 
insulin-stimulated 
glucose transporter 
4 (GLUT4) trans-
location, glucose 
uptake, and insulin 
signaling was inves-
tigated utilizing a 
plasma membrane 
lawn test, 2-de-
oxyglucose uptake, 
and Western blot 
analysis in cultured 
rat L6 muscle cells.

In vitro 
studies on 
L6 muscle 
cells dem-
onstrated 
an increase 
in glucose 
uptake by in-
creasing the 
translocation 
of glucose 
transporter 4 
(GLUT4).

57
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Antiaging The study enrolled 31 
volunteers over the 
age of 40 (17 males 
and 14 females). 
RSSC samples were 
taken from the 
surface of the facial 
skin at the study's 
inception (day 0) 
and conclusion 
(day 29). Addition-
ally, blood samples 
were obtained on 
days 0, 15, and 29 to 
determine systemic 
oxidative stress by 
detecting plasma 
malondialdehyde 
(MDA) levels.

The results 
support the 
theory by in-
dicating that 
sustained 
astaxanthin 
ingestion has 
a high antiox-
idant impact, 
resulting 
in face skin 
regeneration 
that is nota-
bly notice-
able in obese 
participants.

58

Immu-
nomodula-
tor

After 48 hours, 
culture superna-
tants were taken to 
determine cytokine 
production in cul-
tured lymphocytes. 
The concentrations 
of IL-2 and INF-γ 
in the supernatants 
were determined 
using mouse IFN-γ 
and IL-2 assays.

In vivo stud-
ies in mice 
show an 
increase in 
INF-γ, IL-2

59

Antihyper-
tensive

The effects of dietary 
astaxanthin (ASX-O) 
on oxidative parame-
ters in spontaneous-
ly hypertensive rats 
(SHR) were studied 
by measuring the 
levels of nitric oxide 
(NO) end products 
nitrite/nitrate (NO2 
/NO3) and lipid 
peroxidation in ASX-
O-treated SHR.

In vivo 
studies in 
rats with 
hyperten-
sion showed 
a decrease in 
blood pres-
sure

60

Hepatopro-
tective

(Liver Fibro-
sis)

CCL4 was used to 
induce liver fibrosis 
in a mouse model 
(intraperitoneal 
injection three 
times a week for 
eight weeks), and 
astaxanthin was 
given every day in 
three doses (20, 40, 
and 80 mg/kg).

In vivo stud-
ies in mice 
have shown 
a decrease 
in ALT and 
AST, thereby 
reducing le-
sions in liver 
fibrosis

61

Description: ROS: Reactive Oxygen Species; KATO-III: Human 
gastric carcinoma cell line; SNU-1: Human gastric carcinoma 
cell line; GLUT4: Glucose transporter type 4; IRS-1: Insulin 
receptor substrate-1; INF-γ: Interferon -γ; IL-2: Interleukin-2; 
ALT: alanine aminotransferase; AST: aspartate aminotrans-
ferase.

Astaxanthin Production Method

a. Culture Method

Culture System
In general, microalgae culture systems are divided into three: 
photoautotrophic, heterotrophic, and mixotrophic systems. 
H. pluvialis allows cultivation using all three methods, either 
with open or closed systems.27 In the phototropic system, 
microalgae are very dependent on light as an energy source 
and CO2 as a carbon source, both light from lamps or the 
sun. In heterotrophic systems, microalgae growth requires 
organic carbon as an energy source. Commonly used organic 
carbon substrate sources include glucose, acetate, and glyc-
erol.62 In this condition, the microalgae cell density achieved 
was higher than the phototropic condition, so that the cost 
required for harvesting was lower. The mixotrophic system 
is a combination of phototropic and heterotropic methods. 
The microalgae that grow in this system can assimilate sun-
light and organic carbon as energy sources simultaneously 
or alternately.

Culture systems, especially those that require light (photo-
autotrophic), are divided into 2: closed and open culture sys-
tems. Advantages and disadvantages of culture with closed 
and open systems can be seen in Table 4.

Table 4: Advantages and Disadvantages of Open and 
Closed Culture Systems
Culture 
System

Advantages Disadvantages

Outdoor 
Pool

•	Lower costs
•	Easy to clean
•	Easy to maintain
•		More effective for 

large-scale production

•		Low biomass 
productivity

•		Requires large 
flat land

•		Easily contami-
nated

•		Difficult to 
control culture 
conditions

•		The deeper the 
pool, the lower 
the sunlight 
intensity

Tubular Pho-
tobioreactor

•		Has a large lighting 
surface area

•		Have good biomass 
productivity

•		Easy to control culture 
conditions

•		Minimize contamina-
tion

•		Requires a large 
area

•		There is a 
change in 
pH, dissolved 
oxygen and CO2 
along the pipe.
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Culture 
System

Advantages Disadvantages

Flat Plat 
Photobiore-
actor

•		High biomass produc-
tivity

•	Easy to sterilize
•		Has a large lighting 

surface area
•		Suitable for outdoor 

culture

•		Very difficult to 
do in large sizes

•		Very difficult 
to regulate the 
temperature

Column Pho-
tobioreactor

•	High mass transfer
•		Low energy consump-

tion
•	Easy to sterilize

•		Small lighting 
area

•		Relatively more 
expensive

Cultural Conditions
The success of microalgae culture is strongly influenced by 
several important factors, including nutritional and environ-
mental factors. H. pluvialis culture conditions can be seen in 
Table 5.

Table 5: Condition of Culture of H. pluvialis
Parameter Description Reference
Water type Sterile mineral water 63
Media Rudic’s Medium 64,65

BG-11 66
OHM 67

Bold Basal Medium 10
pH 7 – 7.85 68

6 – 9 69
Temperature 25 - 28° C (temperature for 

microalgae growth phase)
69

Light intensity 40-50 µmol m–2S–1 15
3000 lux 69

Photoperiod 
(light:dark)

16 hours: 8 hours
12 hours: 12 hours 66

Stress Induction
H. pluvialis can accumulate astaxanthin under stress. The ac-
cumulation of astaxanthin is a response of microalgae to pro-
tect themselves from oxidative stress conditions.70 Several 
studies of stress induction, either physically or chemically, 
are listed in Table 6.

Table 4: (Continued)

Table 6: Types of Stress Induction
Types of Stress Induc-
tion

Description Results Reference

Salinity stress (addition 
of NaCl)

Variation of concentration of NaCl added:
•		Control (-) without NaCl and Sodium 

Acetate
•		Sodium acetate 2.2 mM
•		NaCl 0.25% + Sodium Acetate 2.2 mM
•		NaCl 0.5% + Sodium Acetate 2.2 mM
•		1% NaCl + Sodium Acetate 2.2 mM

The highest astaxanthin accumulation 
was found in the addition of 0.25% and 
0.5% NaCl, an increase of 2.5 to 4 times 
compared to the control.

68

light stress Variation of light intensity exposed:
•		445 µmol photon m-2 s-1

•		546 µmol photon m-2 s-1

The highest astaxanthin accumulation was 
found in the light exposure treatment with 
an intensity of 546 µmol photon m-2 s-1.

64

Nutritional restriction 
(nitrogen deficiency)

At eight days of culture, microalgae were 
transferred to new media with the addition of 
different NaNO3:
•		Without NaNO3
•		75 mg/L
•		150 mg/L
•		225 mg/L
•		300 mg/L
•		375 mg/L

The highest astaxanthin accumulation was 
found in the treatment with the addition 
of NaNO3 75 mg/L and without the addi-
tion of NaNO3.

69

Butylated Hydroxyanisole Variation of added BHA concentration:
•	0 mg/L
•	2 mg/L
•	4 mg/L
•	8 mg/L

The highest astaxanthin accumulation was 
found in the treatment with the addition 
of BHA 2 mg/L, reaching 29.03 mg/g (% 
dry weight); this value was 2.03 times 
higher than the control.

71

Butylated Hydroxytoluene Variation of added BHT concentration:
•	0 mg/L
•	1 mg/L
•	2 mg/L
•	3 mg/L

The highest astaxanthin accumulation was 
found in the treatment with the addition 
of 2 mg/L BHT.

72
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Melatonin Variation of added melatonin concentration:
•	0 µM
•	5 µM
•	10 µM
•	15 µM

The highest astaxanthin accumulation was 
found in the treatment with the addition 
of 10 µM melatonin. The full astaxanthin 
content achieved was 31.32 mg/g.

16

Fe2+ Variations in the concentration of Fe2SO4 
added:
•	0 µM
•	90 µM
•	180 µM
•	270 µM
•	360 µM
•	450 µM

The highest astaxanthin accumulation was 
found in the treatment with the addition 
of 450 µM Fe2SO4.

65

Harvesting
An efficient harvesting technique is an important step that 
must be done to get a high concentration of harvested bio-
mass. Several harvesting methods commonly used for H. 
pluvialis are flotation and centrifugation methods.27,73

•	Centrifugation Method
Centrifugation is a method of harvesting microalgae based 
on the application of rotary power to precipitate microal-
gae cells so that they are separated from the liquid growth 
medium. The separation was supported by the difference in 
density between the microalgae cells and the liquid medium 
in which the cells grew. The centrifugation method can pro-
duce microalgae in a paste with a solid content of up to 15%. 
Several studies also show that the faster the centrifugation 
cycle, the microalgae biomass obtained can reach up to 95%.

•	Centrifugation Method
This method is a separation process based on gravity where 
the microalgae cells attach to air or gas bubbles so that the 
cells float on the surface. Under these conditions, microal-
gae cells can be harvested easily. In certain types of micro-
algae, cells can flow naturally if the lipid content in the cells 
increases. In the flotation method, the need for operational 
costs will be even greater if it involves flocculants.

Extraction
Extraction methods commonly used include maceration and 
percolation.74 Astaxanthin is a lipophilic compound and is 
soluble in organic solvents and oils. Organic solvents such 
as acetone, DMSO, methanol, n-hexane, and vegetable oils 
such as olive oil, soybean oil, and corn oil have been used for 
astaxanthin extraction.35,74

b. Genetic Engineering
The development of biotechnology today also supports the 
use of microalgae as a producer of bioactive compounds. 
Most of the bioactive compounds produced by microalgae 
are secondary metabolites, which have low cellular produc-
tion. So that the mass production of bioactive compounds 
from microalgae culture (without modification and engineer-
ing) is still not efficient; on the other hand, the synthesis of 
bioactive compounds with chemicals, especially astaxanthin 
compounds, will produce products that are stereochemically 
different from the natural products so that they are not al-
lowed to be consumed by humans.5 However, with the ad-
vancement of biotechnology, the “factory” of microalgae 
biomass can be made more optimal. The use of science and 
methods of mutagenesis and genetic engineering is a solu-
tion that must continue to be developed. Several studies on 
the production of carotenoid compounds such as astaxanthin 
by genetic engineering are listed in table 7.

Table 7: Production of Astaxanthin by Genetic Engineering
Clone 21

Host Description Result

Saccharomyces 
cerevisiae

•  Inserting gene constructs encoding carotene biosynthesis in the host.
•  The carotene biosynthetic genes crtE (GGP synthase), crtYB (encodes 

phytoene synthase and lycopene synthase), crtI (phytoene desaturase) 
were amplified from Xanthophyllomyces dendrorhous cDNA.

•  The gene is inserted into the pMRI plasmids pMRI-21, pMRI-31 and pMRI-
32.

•  Plasmids were transformed into S. cerevisiae using 1.5 kV electroporation.
•  Selection of recombinant colonies using GAL10-GAL1 bidirectional pro-

moters.
•  Recombinant colonies were cultured in Erlenmeyer glass with YPD liquid 

medium, incubated at 30oC.

Obtained as much as 11 mg/g 
total carotenoids (72.57mg/L) 
and 7.41mg/g β-carotene.
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Clone 21

Host Description Result

Combination of Chemical Mutations and Engineering of Biosynthetic Pathways75-77

Microorganisms Description Result

Xanthophyllomy-
ces dendrorhous

•  The gene construct encoding carotene (astaxanthin) biosynthesis is 
inserted in X. Dendrorhous.

•  The gene encoding carotene and astaxanthin biosynthesis, crtYB, was 
inserted into the pPR13F plasmid and inserted into the pPR2TN2BPAT 
modified plasmid containing the asy gene.

•  The mutagen was nitrosoguanidine (200 g/ml), exposed to X. den-
drorhous cells for 30 minutes.

•  Large, red colonies are removed. The AXG-13 mutant colonies were select-
ed after repeated transfer on plates containing 200 g/ml pyrne dedocanoic 
acid, and the AXJ-20 mutant was chosen with 200 g/ml triazine.

The AXJ-20/crtYB mutant 
produced astaxanthin up to 
3.9 mg/g and the AXJ-20/
crtYB transformant up to 9.7 
mg/g, while the wild type was 
only 438 g/g dry weight.

Table 7: (Continued)

CONCLUSION

This study provides valuable pieces of information on asta-
xanthin, particularly regarding its pharmacology activities, 
biosynthesis pathway, various methods of its production in 
microalgae, harvesting, and extracting techniques, that will 
add insight to uncover the critical area of astaxanthin from 
microalgae. 
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