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INTRODUCTION

The infectious disease caused by coronavirus, subsequently 
named as COVID-19, discovered in the year 2019, started 
its outbreak in china but has now spread globally. The pro-
tein spikes on the surface of the coronavirus give the ap-
pearance of a crown and hence got the Latin name “corona” 
meaning “crown”. The Severe Acute Respiratory Syndrome 
Coronavirus 2 (SARS-CoV-2) virus is the main cause of 
this newly discovered disease and are genetically similar 
to SARS Coronavirus (SARS-CoV) which was first iden-
tified in the year 2003. Coronaviruses like SARS-CoV-2, 
SARS-CoV, Middle East respiratory syndrome Coronavi-
rus (MERS-CoV), were initially circulated among a range 

of animals and transmitted to humans due to an increase in 
contact between animals and humans or mutations in the vi-
rus. The disease can spread rapidly among humans through 
an infected person’s respiratory droplets expelled during 
coughing, talking, or sneezing when close in contact with 
other persons. The severity of illness in an infected person 
varies from mild and moderate symptoms include fever, 
cough, sore throat, and tiredness to critical cases such as 
pneumonia, shortness of breath, organ failure, and death.1 
The complications caused due to this infectious disease are 
high for people with underlying medical problems such as 
chronic respiratory disease, diabetes, high blood pressure, 
heart diseases, or cancer, and older ones. 
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ABSTRACT
Introduction: COVID-19 is a pandemic disease affecting the global mankind since December 2019. Diagnosing COVID-19 us-
ing lung X-ray image is a great challenge faced by the entire world.  Early detection helps the doctors to suggest suitable treat-
ment and also helps speedy recovery of the patients. Advancements in the field of computer vision aid medical practitioners to 
predict and diagnosis disease accurately. 
Objective: This study aims to analyze the chest X-ray for determining the presence of COVID-19 using machine learning algo-
rithm. 
Methods: Researchers propose various techniques using machine learning algorithms and deep learning approaches to de-
tect COVID-19. However, obtaining an accurate solution using these AI techniques is the main challenge still remains open to 
researchers. 
Results: This paper proposes a Local Binary Pattern technique to extract discriminant features for distinguishing COVID-19 
disease using the X-ray images. The extracted features are given as input to various classifiers namely Random Forest (RF), 
Linear Discriminant Analysis (LDA), k-Nearest Neighbour (kNN), Classification and Regression Trees (CART), Support Vector 
Machine (SVM), Linear Regression (LR), and Multi-layer perceptron neural network (MLP). The proposed model has achieved 
an accuracy of 77.7% from Local Binary Pattern (LBP) features coupled with Random Forest classifier. 
Conclusion: The proposed algorithm analyzed COVID X-ray images to classify the data in to COVID-19 or not. The features are 
extracted and are classified using machine learning algorithms. The model achieved high accuracy for linear binary pattern with 
random forest classifier.
Key Words: COVID-19, X-ray images (Lungs), Computer Vision, Machine Learning, Local Binary Pattern, Random Forest
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The diagnosis of Coronavirus disease is currently done using a 
test called RT-PCR (Reverse Transcriptase Polymerase Chain 
Reaction) which help in detecting the virus’s genetic mate-
rial. There are also some antibody or serology tests available 
for checking the antibodies against the virus. Diagnostic tests 
such as RT-PCR are time-consuming and sometimes outputs 
false-negative results. Medicines against the virus and vac-
cines to prevent this disease are currently under development. 
Early diagnosis of this deadly infectious disease using a fast 
and accurate approach is crucial for controlling the current 
pandemic situation. Recent studies have reported that COV-
ID-19 can be diagnosed using a chest computed tomography 
(CT) scan with the help of radiologists and can use as an initial 
screening technique to identify the infected patients.

Machine Learning algorithms and Deep Neural networks 
have achieved wide popularity in medical image processing 
over the past few years. This paper’s main focus is to imple-
ment an automated and less time-consuming computer vi-
sion method to diagnose COVID-19 infected patients. The 
aim is to build a machine learning model capable of clas-
sifying infected patients’ chest CT scan images from non-
infected ones. The proposed model uses Local Binary Pat-
tern (LBP) to extract features from the processed CT images 
and classify them accurately. The extracted LBP features 
are reduced using Principal Component Analysis (PCA). 
The reduced features are classified using various classifiers 
namely Random Forest (RF), Linear Discriminant Analy-
sis (LDA), k-Nearest Neighbour (kNN), Classification and 
Regression Trees (CART), Support Vector Machine (SVM), 
Linear Regression (LR), and Multi-layer perceptron neural 
network(MLP).2-4 The performance metrics such as confu-
sion matrix, sensitivity, and specificity are evaluated to de-
termine the proposed system’s classification accuracy. 

Tuncer et al.5 presented an intelligent computer vision ap-
proach to automatically diagnose coronavirus using images 
of Lung X-rays of infected patients using machine learning 
classification algorithms such as linear discriminant (LD), 
support vector machine (SVM), subspace discriminant (SD), 
and k nearest neighbor (kNN), Decision tree (DT). Residual 
Exemplar Local Binary Pattern (ResExLBP) and iterative 
ReliefF (IRF) method were used for feature generation and 
selection. Ardakani et al.1 suggested an efficient Artificial 
Intelligence technique for distinguishing 108 COVID-19 in-
fected patients from pneumonia infected patients by taking 
1020 CT slices. The most popular ten Convolutional deep 
neural networks were used for classification. Among them, 
ResNet-101 and Xception were achieved the best perfor-
mance. Togacar et al.6 proposed a deep learning model with a 
dataset that contains X-ray images of Coronavirus and pneu-
monia infected patients and normal non infected ones. The 
dataset was preprocessed using the Fuzzy color technique 
and the combining and classification of efficient features 
were done with the help of Support Vector Machines (SVM). 

The proposed model is then trained using deep learning 
models such as MobileNetV2 and SqueezeNet. A fast and 
alternative screening approach using an efficient Convolu-
tional deep neural network ‘nCOVnet’ was modelled by7 for 
identifying the corona infected patients using a dataset con-
taining X-ray images of infected ones.

The proposed model used a Convolutional neural network 
for feature extraction and classification of X-ray images of 
the chest. Tanvir et al.8 designed an automated COVID-19 
and other Pneumonia related disease identification method 
using images of infected patient’s X-rays of the chest. A Con-
volutional based deep neural network architecture named 
“CovXNet “was used to extract the important features from 
images of X-rays and classifying them accordingly. Many 
CovXNet architecture forms were used for training different 
datasets and obtained a very satisfactory accuracy rate for 
all the classifications. CoroNet, a Convolutional deep neural 
network model uses images of X-rays of chest to diagnose 
coronavirus disease.9 The popular Xception architecture is 
used as a base. The ImageNet dataset is used for pre-training 
the model and then trained with two publicly available data-
sets containing images of X-rays of corona infected patients’ 
pneumonia infected ones. A three-fold approach to diagnose 
corona disease is from the images of X-rays of chest.10 The 
initial model identifies the X-rays of patients infected from 
the normal ones. The second model classifies the images of 
X-rays of corona infected from Pneumonia. The third model 
provides a visualization of coronavirus infected images. A 
deep transfer-based learning technique was suggested for 
classifying the corona infected patients with Computed To-
mography images.11 Most important features from the CT 
images are extracted with the help of ResNet-50 architecture. 
Automated diagnosis of COVID-19 infected patients using a 
deep transfer learning-based approach is using chest X-rays 
and the proposed model is a modified Inception model.4,12 
The model performance is evaluated with various perfor-
mance metrics and compared with various existing competi-
tive models like VGGNet, ResNet, Alexnet, Googlenet, and 
Inceptionnet. Sousa et al13 implemented a machine learn-
ing model to diagnose pneumonia in infants with the help 
of radiographic images. Machine learning algorithms such 
as K-Nearest Neighbour (KNN), Support Vector Machines 
(SVM), Naive Bayes, are used for image classification. The 
SVM classifier gave the best results the others. Gozes et 
al14 developed Artificial Intelligence-based 2D and 3D deep 
learning models to automatically detect and track coronavi-
rus disease from thoracic CT scan images.

PROPOSED WORK

Local Binary Pattern 
Local Binary Pattern is one of the most popular and effec-
tively used visual descriptors in the field of computer vision. 
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They can automatically detect and classify the patterns and 
textures from images and are widely used for various real-
time applications such as remote sensing, texture classifica-
tion, facial recognition, facial expression recognition, etc. 
Due to its discriminatory power and simplicity in computa-
tion. The proposed work uses the LBP texture descriptor for 
obtaining feature vectors by taking each target window of 
the image and is processed for extracting an LBP code. The 
initial step is to convert the original image into a greyscale 
image. The target window is divided into various cells and 
the center pixel value of each target window is compared 
with its neighbor’s pixel value for computing a threshold. 
The value ‘0’ is assigned to each neighbor’s whose value is 
less than or equal to the center pixel and assigns “1” to those 
who is having a value greater than the center pixel. This re-
sults in a binary number, and the decimal value correspond-
ing to this binary number is calculated for the center pixel 
and is then stored in an output LBP two-dimensional array. 
The same process is repeated for all pixels. The histogram 
is then computed based on all the pixel values stored in the 
LBP array, and finally, the normalized histograms are com-
bined and summed to get the feature vectors from the input 
image. The LBP histogram can be calculated as:

where ‘n’ represents the LBP produced labels number. The 
value ‘A’ is true for I (A) = 0 and the value of ‘A’ is false for 
I (A) = 1.  

The original implementation of LBP is restricted to extract 
features only from small structures and is limited to a fixed 
scale of 3x3 matrixes. In 2002, Ojala et al15 proposed an ap-
proach that is an extension to the original LBP implementa-
tion and is capable of handling neighbourhood of variable 
sizes. This approach is considered a circular neighborhood 
instead of a square neighborhood for each pixel with vary-
ing boundaries consisting of data points ‘P’ and radius ‘R’ of 
the circle. The neighbourhood is represented using the nota-
tion (P, R). This work focuses on implementing a greyscale 
and rotation invariant-based LBP to identify the “uniform” 
patterns so that the length of the feature vector can be re-
duced. The LBP pattern obtained by thresholding containing 
a maximum of two 0-1 or 1-0 transitions is called “uniform” 
and those with more than two 0-1 or 1-0 transitions are non-
uniform patterns. The histogram contains individual bins for 
each uniform pattern and all the non-uniform patterns are 
labelled to a single bin for computation.

Principle Component Analysis
Principle Component Analysis is considered as the most popu-
lar and commonly used unsupervised and dimensionality re-
duction algorithms. The main function PCA is to identify the 

correlation among variables. The algorithm helps to decrease 
the dimensionality of a larger dataset and project it onto a di-
mensionally smaller subspace without information loss. This 
approach makes the analysis and visualization of data easy 
and helps the machine learning algorithms process faster with 
a smaller dataset. PCA’s wide applications include visualiza-
tion, noise filtering, gene data analysis, feature extraction, etc.

The PCA algorithm’s initial step is to standardize the data for 
transforming all the variables to the same scale. This helps 
in reducing the immense differences in the range of vari-
ables and overcomes biased results. Standardization can be 
done by taking the mean and standard deviation.  The next 
step is to compute the covariance matrix to learn the correla-
tion between the input dataset variables. The data’s principal 
components can be determined from the eigenvectors and 
eigen16-19 values computed using covariance matrix or single 
value decomposition. The eigenvalues obtained from the co-
variance matrix are sorted in descending order and choose 
the eigenvectors corresponding to the largest eigenvalues.20-23 

A projection matrix or feature vector is constructed from the 
selected eigenvectors, and the original dataset is transformed 
into a smaller dimensional feature space represented by prin-
cipal components with the help of feature vector.24

Simulation Results
The overall flow structure of the proposed COVID-19 clas-
sification process is given in the Figure 1. 

Figure 1: Proposed COVID-19 Classification System using X-
ray images.

The initial step is to convert CT images of X-rays into grey-
scale. Processed images are shown in the Figure 2.  The lo-
cal binary pattern features are generated from the images. The 
features are reduced using the principal component analysis. 
The reduced features are classified using Classification and 
Regression Trees (CART), Linear Discriminant Analysis 
(LDA), Random Forest (RF), K- Nearest Neighbourhood 
(KNN), Support Vector Machine (SVM), Linear Regression 
(LR), and Multi-Layer Perceptron Neural based Network 
(MLP) for classifying given input images of X-ray into corona 
virus-infected and non-infected classes. Kaggle included CT 
images of Lung X-rays are taken, where there are 349 CT im-
ages belonging to 216 patients. Nearly 40,000 LBP features 
were generated from 746 images. An optimal number of com-
ponents selected using in the PCA is 10. 596 CT images were 
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taken for training the model and 150 images were used to test 
the model. The accuracy achieved using LR, LDA is 66%, 
KNN is 75%, CART is 74%, RF is 77%, SVM 73% and MLP 
is 74%. Random Forest outperforms the classification accu-
racy. Figure 3 shows the Precision and Recall of Random For-
est, figure 4 shows the confusion matrix and Figure 5 shows 
the LBP – Machine algorithm Comparison.

Figure 2: COVID-19& NONCOVID-19 Images.

Table 1: Classification accuracy of different classifiers.
LR LDA KNN CART RF SVM

0.663495 
(0.051115)

0.662180 
(0.055513)

0.752108 
(0.034819)

0.741369 
(0.065962)

0.773658 
(0.063622)

0.738613 
(0.047420) 

Figure 3: Precision and Recall of Random Forest.

Figure 4: Confusion Matrix.

Figure 5: LBP – Machine algorithm Comparison.

CONCLUSION

A significant problem in the current scenario is classifying 
the COVID-19 disease. Identification of salient   features that 
distinguish between the images of COVID and NON-COV-
ID is an important task. A CT image-based machine learn-
ing approach with LBP and PCA is proposed to differentiate 
COVID-19 infection from normal chest lung x-ray image. In 
this study 40,000 local binary features were extracted from 
the COVID-19 and Non-COVID CT scan images. The op-
timal features are identified using the principal component 
analysis. The optimal features are trained with different clas-
sifiers namely LR, LDA, KNN, CART, RF, SVM and MLP. 
Random Forest classifier achieved an accuracy of 77% for 
the reduced features.
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