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ABSTRACT 

Objective: The purpose of the present study is to discuss the stability of a thermo-convective problem 

where the gravity field varies across the layer under the influences of internal heat source and rotation 

when both the boundary surfaces are free. Methods: Linear stability analysis is performed to discuss 

the stability of the problem and the associated eigen-value problem is solved by using Newton-Raphson 

method. Results: The numerical approximations of the Rayleigh number are obtained for various 

values of the parameters and presented in tables 1 and 2. Numerical results show a destabilizing effect 

of the presence of heat source. Comparisons with the available published work are also presented. 

Conclusion: It is found that the critical Rayleigh number increases with an increase in gravity field and 

decrease in heat source i.e. the region of stability decreases with an increase in heat source. 
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INTRODUCTION 

Natural (Free) convection in a horizontal layer of 

fluid heated from below has been the subject of 

study for many decades owing to its importance 

in several engineering applications such as 

Chemical Engineering, Geophysics, 

Oceanography and Thermal Insulation Systems. 

The earliest experiments to demonstrate the onset 

of thermal instability in thin liquid layers are 

those of Bénard (1900). Rayleigh (1916) was the 

first to study the problem theoretically and apply 

the method of perturbations. A detailed amount 

of thermal convection in a Newtonian fluid layer 

in the presence of magnetic field and rotation has 

been given by Chandrasekhar (1981). Energy 

stability theory has been enlarged by the work of 

Serrin (1959), Joseph (1965, 1966), (Galdi & 

Straughan, 1985), (Galdi & Padula 1990), 

(Straughan 2004). Mulone and Rionero (1989) 

have studied nonlinear stability of a rotating 

Bénard problem via the Lyapounov direct 

method. Straughan (1989) has studied the 

convection in a variable gravity field in a viscous 

fluid layer. Further extensions of this problem by 

considering the effects of porous medium and 

internal heat source have been investigated by 

Rionero and Straughan (1990). Qin and Kaloni 

(1995) have studied nonlinear stability of a 

rotating Bénard problem in a porous medium by 

using energy theory.  Straughan (2001) has 

studied the effect of a sharp nonlinear stability 

threshold in rotating porous convection. 

Nonlinear convection in a porous medium with 

inclined temperature gradient and variable gravity 

effects have been performed by Qiao and Kaloni 

(2001). Alex and Patil (2002a) have discussed the 

effect of a variable gravity field on convection in 

an anisotropic porous medium with internal heat 

source and inclined temperature gradient. 

Keeping in mind the importance of various 

parameters like variable gravity, thermal 

convection, internal heat source and rotation in 

Geophysics, Crystal Growth and Earth’s 

Sciences, our interest in the present paper is to 
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find the stability of a horizontal layer of fluid 

heated from below for a variable gravity field 

under the effects of non-uniform heat source and 

coriolis force. As is well known, variable gravity 

fields are of likely importance in convective 

flows and also in material processing technology. 

 

RESEARCH METHODOLOGY 

The following Research Methodology is adopted 

for the proposed Research paper: 

 Identification of the problem 

 Collection and study of related literature 

 Mathematical formulation of the problem 

 Stability analysis and numerical solution of 

the mathematical model 

 Interpretation of results 

 Conclusion  

 

Mathematical formulation of the problem 

The physical setting for our problem is as 

follows. We consider the motion of a heat 

conducting viscous fluid in a channel of infinite 

length and height d. The fluid layer is acted upon 

by a variable gravity field acting in the z-

direction and is orthogonal to the fluid layer with 

a non-uniform heat source Q (z) and Coriolis 

force. 

 

Under the Boussinesq approximation, the equations governing the convective motion are  
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Where 
 
is the coefficient of kinematic viscosity,   the density, k the thermal diffusivity, p the pressure, 

T the temperature, Q(z) the non-uniform internal heat source and ( )h z represents gravity variations. 

The equation of state is   TT 
00

1       (2.4) 

 

Linear stability analysis and solution for eigenvalue problem 

To investigate the linear stability, the governing equations (2.1) - (2.3) in non-dimensional form 

(Omitting the star over each variable hereafter for the sake of convenience) can be written as    

  3
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Where              
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R denotes the Rayleigh number and   is the perturbed temperature.
 

The boundary conditions are .00,0 dandzatu
i

     (3.2) 

 We introduce the following non-dimensional quantities in equations (3.1a) – (3.1c)  
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And the following dimensionless numbers are defined by 
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Eliminating p between equations (3.1 a) and (3.1 c), we find (after using the boundary conditions and 

divergence theorem) 
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Here, V denotes a periodicity cell, . denotes the integration over V, and .  denotes the  
2

L V  norm.  

The system of equations (3.3) and (3.4) can be put in the form 
d E

R I D
d t

    (3.5) 

Where the Energy functional E, the production term I, and the dissipation term D are defined 

as: 2 21 1
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We now defined 
D

I
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R

1
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On combining (3.5) with (3.6) and (3.7), and by using Poincare’ inequality
2 2

    , we can infer 

that 
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Inequality (3.8) clearly indicates that   0E t  at least exponentially as t   . 

We now return to (3.7) and consider the Variational problem for the determination of
E

R . The associated 

Euler-Lagrange’s equations become 
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Where 
ii

kuw   is the z-component of the velocity, p is a Lagrange’s multiplier introduced, since 
i

u  is 

solenoidal. 

On taking curlcurl of equation (3.10), we find the equations in w  and   of the form, 
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  and M(z)=H(z)+N(z)  

Eliminating   between equations (3.13) and (3.14), we find 
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Where 2
,

E

d
D R

d z
 the Rayleigh number for energy stability and k is the wave number. 

In the absence of rotation, variable gravity and internal heat source [i.e. T=0, H(z)=1, N(z)=1], the 

problem becomes the classical problem of convection [3] and the critical Rayleigh number is 

4

2 2 7
6 5 7 .5 1 3

4
E C

R


 . Hence for a Rayleigh number less than 657.513, we have stability i.e. all 

perturbations decay to zero. On the other hand, if the Rayleigh number is greater than 657.513, we obtain 

instability. 

Thus the exact solution w  of equation (3.15) subject to the boundary conditions  

  dandzatwDw
n

00,0,0
2

   
(free boundary case) can be written in the form 

s inw n z (for the lowest mode).      (3.16) 

Substituting solution (3.16) into equation (3.15), we obtain 
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As a function of x, 
E

R  given by equation (3.18) attains its minimum when 

 
2
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2 3 1

T
x x

n 
            (3.19)

 
With x determined as a solution of cubic equation (3.19), equation (3.18) will give the required critical 

Rayleigh number 2

E C
R . 

 

RESULTS AND DISCUSSION 

The numerical results are presented for critical Rayleigh numbers 2

E C
R  and wave numbers for different 

values of parameters when both bounding surfaces are free.    



Kapil Kumar et al 
STABILITY OF A THERMO-CONVECTIVE PROBLEM UNDER THE INFLUENCES OF VARIABLE 

GRAVITY, INTERNAL HEAT SOURCE AND ROTATION 

 

  Int  J  Cur  Res  Rev,  Nov  2012 / Vol  04 (21) ,  
Page 201 

 
  

Values of 2

E C
R  determined for various values of T

2
, H(z) and N(z):  

 

T
2 

2
k    h(z)   q(z) 2

E C
R  

0  4.943 0 0 0 0 657.513 

10 6.707 0.2 -0.1 0.2 1 776.862 

50 10.699 0.4 -0.2 0.4 5 458.689 

100 13.702 0.6 -0.3 0.6 10 173.580 

200 17.727 0.8 -0.4 0.8 15 91.022 

500 25.029 1.0 -0.5 1.0 20 74.236 

   1 : R ayleigh  num ber fo r d ifferen t values o f the param eters , , , , , , W hen  n 1T able k T h z q z  
 

 

T
2 

2
k    h(z)   q(z) 2

E C
R  

0  4.943 0 0 0 0 657.513 

10 21.831 0.2 -0.1 0.2 1 9806.738 

50 28.356 0.4 -0.2 0.4 5 4094.849 

100 34.131 0.6 -0.3 0.6 10 1321.316 

200 42.775 0.8 -0.4 0.8 15 602.600 

500 59.516 1.0 -0.5 1.0 20 425.164 

   2 : R ayleigh  num ber fo r d ifferen t values o f the param eters , , , , , , W hen  n 2T able k T h z q z  
 

 
The approximate values of the Rayleigh number 

for various values of    , , , , ,k T h z q z   for 

the case, when both the boundaries are free, are 

presented in Table 1 (n=1), Table 2 (n=2).  

Tables 1 and 2 represent that the values of critical 

Rayleigh number are decreasing rapidly in both 

cases with an increasing heat source. The table 

also shows that the increase in   (i.e. the 

decrease in   h z  and in  q z reduces the 

domain of stability. 

For 0 , 0 , 0T    , we regain the known [3] 

critical values of Rayleigh 

number, 2
6 5 7 .5 1 3

E C
R  , 2

6 5 7 .5 1 3
E C

R  for 

n=1, n=2 respectively. (for free boundaries)  

 

CONCLUSION 

In this paper, for a horizontal layer of fluid heated 

from below in the case of variable gravity in z- 

direction with a non-uniform heat source and 

rotation, we obtained analytical expression of the 

Euler-Lagrange equation and perform numerical 

computations for the case of free boundaries. The 

Newton-Raphson method is used to compute the 

values of critical Rayleigh number for various 

modes. The table shows the influences of each 

parameter on critical Rayleigh number i.e. the 

region of stability decreases with the increase in 

heat source and decrease in gravity field. In the 

absence of heat source and rotation, the 

numerical results obtained are in good agreement 

with the previous published work [15], [16]. 
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