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ABSTRACT
Aim: The aim of the paper is to introduce a generalized measure of discrimination in fuzzy environment. 
Methodology: To achieve the goal of this paper a parametric generalization of Hellinger’s fuzzy divergence measure is studied 
along with the proof of its validity. 
Results: A particular case and some important properties are discussed in detail of the proposed generalized Hellinger’s fuzzy 
divergence measure. 
Conclusion: Generalized Hellinger’s fuzzy divergence measure is valid measure of fuzzy divergence.
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INTRODUCTION

Shannon [1] was first to use the word “entropy” to meas-
ure an uncertain degree of the randomness in a probability 
distribution. The theory of fuzzy sets and fuzzy logic devel-
oped by Zadeh [2] has been used to form ambiguity, lack of 
information and uncertainty inherent in the human decision 
making process. It has achieved a great success in various 
areas such as multi-criteria decision making (MCDM), logi-
cal programming, pattern recognition, medical diagnosis and 
so on. Zadeh [3] introduced fuzzy entropy as an significant 
concept for measuring fuzzy information. 	

Thereafter, a number of researchers made study on the fuzzy 
theory and find their applications in different areas. For ex-
ample, some new information and divergence measures and 
their applications in different areas have been proposed in 
literature [4-22].

Although many information measures between fuzzy sets 
has been emerging in the last decades. Still, there is a need 
to define quantitative information measures for impreci-
sion, discrimination, distance, etc. over fuzzy sets with their 
practical applications. In literature the Hellinger’s measure 
of discrimination was firstly introduced by Hellinger [23]. 
Here we propose a new parametric generalized Hellinger’s 
divergence measure in fuzzy environment which provides a 
flexible approach to further leverage of choice to the user. It 

may be observed that the potential, strength and efficiency of 
this new generalized Hellinger’s fuzzy divergence measure 
exist in its properties. 

Methodology section we recall and discuss some well-known 
concepts and the notions related to fuzzy set theory.  In re-
sults section we introduce a generalized Hellinger’s fuzzy 
divergence measure with the proof of validity. Some inter-
esting properties of the proposed measure between different 
fuzzy sets are studied drawn in discussion section. Final sec-
tion concludes the paper.

METHODOLOGY

We now review a number of well-known concepts and defi-
nitions related with the theory of fuzzy sets. The uncertainty 
and vagueness in the environment can be easily handled by 
fuzzy sets.  

Definition 1. Fuzzy Set(FS) [2]: A fuzzy set (FS) X  on a 
universe of discourse 1 2( , ,..., )nU u u u= having the mem-
bership function : [0,1]X Uµ →  as follows:

{ }, ( )XX a a a Uµ= ∈

The membership value ( )X aµ  describes the degree of the be-
longingness of a U∈ in X. When ( )X aµ  is valued in {0, 1}, 
it is the characteristic function of a crisp (i.e., non-fuzzy) set. 
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The fuzzy divergence measure can be defined as the differ-
ence between two fuzzy sets.

Bhandari and Pal [24] established the fuzzy divergence 
measure analogous to Kullback and Leibler [25] divergence 
measure, as

1

( ) 1 ( )( : ) ( ) log (1 ( )) log
( ) 1 ( )

n
A i A i

A i A i
B i B ii

x xI A B x x
x x

µ µµ µ
µ µ=

 −= + − − 
∑ 	 (1)

with the conditions:

( : ) 0I A B if A B= =

( : ) 0I A B if A B= =

( : )I A B  is a convex function of ( )A ixµ .

RESULTS

We now propose a generalized measure of Hellinger’s diver-
gence between two fuzzy sets A and B defined in a universe 
of discourse { }1 2, ,..., nU a a a= having membership values

( ), ( ) (0,1)X i Y ia aµ µ ∈ corresponding to Taneja [26] general-
ized Hellinger’s discrimination measure given by
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Theorem 1 ( , )th X Y  is the valid divergence 
measure of fuzzy sets.
Proof: It is clear from (2) that 

(i)	 ( , ) 0th X Y ≥
(ii)	 ( , ) 0th X Y = if X Yµ µ=

(iii)	We now check the convexity of ( , )th X Y .
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Similarly, t N∈ , t N∈ .

Thus ( , )th X Y  is a convex function of fuzzy sets X and Y and 
hence in view of the definition of fuzzy divergence measure 
of Bhandari and Pal [2] provided in Section 2, ( , )th X Y is a 
valid measure of fuzzy divergence.

Particular Case: For 2 ( , )h X Y , 2 ( , )h X Y  reduces to 2 ( , )h X Y  
where ( , )h X Y  is fuzzy Hellinger’s divergence measure. 

DISCUSSION

We now provide some more properties of the proposed gen-
eralized fuzzy divergence measure (2) in the following theo-
rems. While proving these theorems we consider the distri-
bution of U in to two parts 1U  and 2U  as 

	 1 { / , ( ) ( )}X i Y iU a a U a aµ µ= ∈ ≥ 	 (3)

 and	 ( , ) ( , ) ( , )t t th X Y X h X Y X h X Y∪ + ∩ = 	 (4)

Theorem 2 
(a) ( , ) ( , ) ( , )t t th X Y X h X Y X h X Y∪ + ∩ =

(b) ( , ) ( , ) ( , )t t th X Y X Y h X Y X Y h X Y∪ ∩ = ∩ ∪ =

(c) ( , ) ( , )t th X X h X X= .

Theorem 3 
(a) ( , ) ( , ) ( , ) ( , )t t t th X Y Z h X Y Z h X Z h Y Z∪ + ∩ = + .
(b) ( , ) ( , )t th X X Y h Y X Y∩ = ∪ .
(c) ( , ) ( , )t th X X Y h Y X Y∩ = ∪ .

Theorem 4 
(a) ( , ) ( , )t th X Y X Y h X Y∪ ∩ = .

(b) ( , ) ( , )t th X Y h X Y= .

(c) ( , ) ( , )t th X Y h X Y= .

(d) ( , ) ( , ) ( , ) ( , )t t t th X Y h X Y h X Y h X Y+ = + .

Proof: Proof of above theorems follows from (3) and (4).

CONCLUSION

In the present paper we have obtained generalized informa-
tion measure of discrimination in fuzzy setting. For this we 
have proposed and validated the generalized Hellinger’s 
measure of fuzzy divergence. A particular case and a num-
ber of the interesting efficient properties of this generalized 
divergence measure are proven. Finally, we observe that the 
presence of the parameters in the proposed measure provides 
a greater flexibility in applications. 
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