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ABSTRACT 

The paper critically examines, within the framework of linear analysis, thermosolutal instability of an 

incompressible, viscous fluid confined in a porous medium in the presence of magnetic field, 

analytically and numerically both. The analytical discussion provides the sufficient conditions of 

stability and instability and the characterization of modes. By actually calculating the root of 

eigenvalue equation (of degree 4) neutral stability curves are drawn. The numerical results show the 

effect of various physical parameters on the critical wave number ac. It is concluded that RD
-1

 , S and R4  

have stabilizing character and Richardson number J  has destabilizing character. The non-dimensional 

parameter R2  shows a dual character, which depends upon thermal diffusivity .  

Keywords: Thermosolutal instability, porous medium, magnetic field 

 

INTRODUCTION 

The problems on thermal instability (Bénard 

convection) in a fluid layer under varying 

assumptions of hydrodynamics and 

hydromagnetic have been discussed in detail by 

Chandrasekhar[1] in his celebrated monograph. 

The problem of thermosolutal instability in 

fluids through a porous medium is of importance 

in geophysics, soil sciences, ground-water 

hydrology and astrophysics. The development of 

geothermal power resources holds increased 

general interest in the study of the properties of 

convection in a porous medium.The instability 

of fluid flows in a porous medium under varying 

assumptions has been well summarized by 

Scheidegger [2] and Yih [3]. While investigating 

the flows or flow instabilities through porous 

media, the liquid flow has been assumed to be 

governed by Darcy’s Law [4] by most of the 

research workers, which neglects the inertial 

forces on the flow. Beavers et al. [5] 

demonstrated experimentally the existence of 

shear within the porous medium near surface, 

where the porous medium is exposed to a freely 

flowing fluid, thus forming a zone of shear-

induced flow field. Darcy’s equation however, 

cannot predict the existence of such a boundary 

zone, since no macroscopic shear term is 

included in this equation (Joseph and Tao [6]). 

To be mathematically compatible with the 

Navier-Stokes equations and physically 

consistent with the experimentally observed 
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boundary shear zone mentioned above, 

Brinkman [7] proposed the introduction of the 

term 
1k

μ

 
 
 

V    in addition to  2μ


 V  in the 

equations of fluid motion. The thermosolutal 

convection in a porous medium was studied by 

Nield and Bejan [8]. 

Instability of compressible or incompressible 

flow has been studied extensively by a number 

of research workers in past few decades. In 

almost all such investigations, the Boussines’q 

approximation is used to simplify the equations 

of motion. Goel et.al. [9] examined the shear 

flow instability of an incompressible visco-

elastic second order fluid in a porous medium in 

which the modified Darcy’s law is replaced by 

the celebrated Brinkman model so that both the 

inertia and viscous terms are included in their 

usual forms. 

The behaviour of conducting fluid is very much 

different in the absence and in the presence of a 

magnetic field. The interesting properties 

associated with a magnetic field, have attracted a 

number of research workers to work in this 

direction. Bansal and Agrawal [10] have studied 

the thermal instability of a compressible shear 

flow in the presence of a weak applied magnetic 

field. The problem for compressible shear layer 

in the presence of a weak applied magnetic field 

through porous medium has been studied by 

Bansal et.al. [11]. 

In the present paper, an attempt has been made 

to examine the thermosolutal instability of an 

incompressible, viscous fluid in the presence of 

magnetic field and confined in a porous medium 

following Brinkman model. The Boussinesq 

approximation is used throughout the paper. It 

states that variations of density in the equations 

of motion can safely be ignored everywhere 

except its association with the external force. 

The approximation is well justified in the case of 

incompressible fluids. 
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FORMULATION OF THE PROBLEM 

Here we consider an infinite, horizontal, incompressible, viscous fluid saturating an isotropic porous 

medium and which is subjected to uniform magnetic field in the horizontal direction. Uniform 

temperature and concentration gradients are maintained along z-axis. Equations expressing the 

conservation of momentum, mass, magnetic field, temperature, solute mass concentration and equation of 

state in Brinkman model are:             HHVVV
V


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    000 '1 CCTT   ,                                                                                            (7) 

where V, H, , , , ’, , ’,  and k1 are respectively fluid velocity, magnetic field intensity, density, 

viscosity coefficient, thermal diffusivity, solute diffusivity, thermal expansion coefficient, solute 

expansion coefficient, medium porosity and medium permeability. g = (0,0,-g) is the gravitational 

acceleration. Subscript zero in eq.(7) refers to the value at the reference level z = 0.  

 

Basic State 

In the undisturbed state, the fluid is at rest. Constant temperature 
dT

dz

 

 
 

 and concentration gradients 

'
dC

dz

 

 
 

 are maintained in the fluid and the uniform magnetic field acts in the horizontal direction (say, 

in the x-direction). Therefore, the basic state is described as 

    zCCzTTH ',,0,0,,0,0,0 000   HV ,   z''10    

and           






 2

00
''

2

1
zzgpp                                                                                       (8) 

 

Perturbations and Normal Mode Analysis    

The basic state characterized by eq.(8) is slightly perturbed, equations in perturbations are linearized 

within the framework of classical linear theory of stability, arbitrary perturbation  f’(x,y,z,t) is analysed 

into normal modes as 

    czbyaxitftzyxf  exp,,,' , 

and the perturbation quantities are eliminated to yield the following eigen-value equation of degree four: 
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 where a, b and c are real and , a time constant, is complex, in general and 2222
cbal   and 

222 bam  .  

      Restricting our discussion to two-dimensional disturbances in the xy-plane(so that c = 0) and 

introducing the transformations  

                                     
d

U *
0    and     * *

,
1

,a l a l
d

 , 

The final eigen-value equation(after dropping the asterisks) is obtained as 

0234  DCBA  ,                                                                                                        (10) 
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U
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2
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2

0

2''
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
  are Richardson numbers. 

 

Analytical Discussion 

Theorem1:- System is unstable under the condition QJJ  ' ,      

                 where            SaRRRlRRRRRRlQ D
21

32
2

434232
4

                                            (11) 

Proof:- Under the condition of the theorem, the coefficient B of 2
 becomes negative. If k, k = 1,2,3 and 

4 are the roots of the eq.(10), then 

                                                    021   B  

It is clear from here, that either at least one root is positive or if all roots are complex, then exactly one 

pair has positive real parts. This ensures the instability of the system. The region of instability in (J,J’) 

plane is shown in Fig.1. This result is similar to the one obtained by Goel et.al. [12], however, the value 

of Q is different in this case from the value of Q in Goel et.al.  

 

Discussion for non-oscillatory modes: 

Theorem2:- System is stable under the condition 

                             0  and 0'  .                                                                                       (12a,b) 

Proof:- Eq.(3.2) for non-oscillatory modes (i = 0) becomes 

                        0234  DCBA rrrr                                                                                  (13) 

     If J < 0 and J’ < 0, then the roots of eq.(13) are all negative, implying, thereby the stability of non-

oscillatory modes. 

The situation when both J and J’ are negative will be referred to as potentially stable arrangement. 

  

Theorem3:- If the condition (12a) is violated, then the system is stable under the condition 
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                                        '
'

JJ



                if    '    

and                                  'JJ                      if     '   

Proof:- Proof is obvious. 

 

Remark:- A similar result can be proved when condition(12b) is violated. In this case, system is stable 

under the condition  

                                       JJ 
 '

'                  if      '         

and                                 JJ '                       if     '  

 

Theorem4:- If both the conditions (12a,b) are violated, then sufficient condition of stability is given by 
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Proof:- Eq.(13) does not allow any positive root under the condition  
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This establishes a stabilizing role of magnetic field. 

 

Theorem 5:- If 
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 The above two conditions are replaced by the single condition 
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NUMERICAL RESULTS AND DISCUSSION 

Eq.(10) is a fourth degree equation in  with real 

coefficients, which depends upon RD
-1

, S, J, J’, R2, 

R3, R4, l and a. Our aim has been to examine the 

effect of various parameters such as RD
-1

, R2, R4, 

magnetic force number S and the Richardson 

number J on the stability of the system. This has 

been achieved by actually calculating the roots of 

the equation (3.2) correct upto three decimal 

places. The calculation of critical wave numbers 

has lead to the neutral stability curves. 

Fig.2. shows the critical wave number ac for 

different value of RD
-1

 (curve-I). When RD
-1

 =0, for 

a < 1.321 unstable modes are non-oscillatory i.e., 

the eigenvalue equation has all real roots with at 

least one positive root. For 1.321 < a < 2.153 

unstable modes are oscillatory and system 

becomes stable for a ≥ 2.153 . As RD
-1

 increases, 

ac decreases so that the range of stable wave 

numbers increases. It is concluded that RD
-1

 has a 

stabilizing character and a large value of RD
-1

 is 

required to stabilize the system for all wave 

numbers. Curve-II separates the unstable modes 

into unstable oscillatory and unstable non-

oscillatory modes. As RD
-1

 increases, the range of 

both the unstable oscillatory and the unstable non-

oscillatory modes decreases. 

Fig.3. shows the stabilizing character of magnetic 

field (curve-I). Short wave length perturbations are 

more stable. The unstable modes are divided into 

oscillatory and non-oscillatory modes. The large 

wave length perturbations are unstable and non-

oscillatory and the modes which are 

intermediatory between stable and unstable non-

oscillatory modes are unstable and oscillatory, i.e., 

a > ac are stable, ac* < a < ac   are unstable and 

oscillatory and a < ac* are unstable and non-

oscillatory. It is important to observe that whereas 

the unstable modes are non-oscillatory in the 

absence of  magnetic field, some oscillatory 

unstable modes are introduced in its presence . 

Fig.4. shows the destabilizing character of J. As J 

increases, ac increases which decreases the range 

of stable wave numbers. As is clear from this 

figure, the range of both the non-oscillatory 

unstable and the oscillatory unstable modes 

increases with J.  

Fig.5. shows the dual character of the non-

dimensional parameter R2, which in fact, depends 

upon the thermal diffusivity . As R2 increases 

from 0 to 0.3, the range of stable wave increases. 

As R2 increases from 0.3 to 3.5 approximately, the 

range of unstable wave numbers decreases rapidly, 

however, this decrease in the range of unstable 

wave numbers is slow as R2 further increases 

beyond 3.5. The neutral stability curve also shows 

that the critical wave number for maximum 

instability is given by ac = 2.081 and it occurs for 

R2 = 0.3. Similar character is exhibited for R3. 

Stabilizing character of fluid viscosity is exhibited 

in Fig.6. As R4 increases, the range of stable wave 

numbers increases sharply upto R4 = 4 (approx.) 

and then increases slowly as R4 further increases. 

 

CONCLUSION 

The analytical discussion provides the sufficient 

conditions of stability and instability and the 

characterization of modes. Theorem 2 states that 

non-oscillatory modes are stable if 0  and 

0'  .  This situation is known as potentially 

stable arrangement. 

The numerical results show the effect of various 

physical parameters on the critical wave number 

ac. On the basis of numerical discussion & neutral 

stability curves obtained in paper, it is concluded 

that medium porosity parameter RD
-1

 , magnetic 

force number S and fluid viscosity have stabilizing 

character and Richardson number J  has 

destabilizing character. The non-dimensional 

parameter R2, which depends upon thermal 

diffusivity ,  shows a dual character,  
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Fig.1. Unstable region (shaded) in (J,J’) plane 
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Fig.2. Critical wave number ac Vs RD
-1

 ( R2 =  R3 = R4 = 0.5, J = J’ = 5, S = 2) 
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Fig.3. Critical wave number ac Vs S (R2 = R3 = R4 = 0.5, J = J’ = 5, RD

-1
 = 0.5) 
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Fig.4. Critical wave number ac Vs J ( R2 = R3 = R4 = 0.5,  J’ = 5, RD

-1
 = 0.5,S = 2) 
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Fig.5. Critical wave number ac Vs R2 ( R3 = R4 = 0.5, J = J’ = 5, RD
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