-
Das P, Mandal SC, Bhagabati SK, Akhtar MS, Singh SK. Important live food organisms and their role in aquaculture. Front Mar Sci 2012;5(4):69-86.
-
Southgate PC. Hatchery and Larval Foods. In Aquaculture: Farming Aquatic Animals and Plants. Wiley-Blackwell Chichester 2019;12:183-201.
-
Altaff K, Janakiraman A. Effect of temperature on mass culture of three species of zooplankton, Brachionus plicatilis, Ceriodaphnia reticulate and Apocyclopsdengizicus. Int J Fish Aquat Stud 2015; 2(4): 49-53.
-
Wu RA, Ding Q, Yin L, Chi X, Sun N, He R, Li Z. Comparison of the nutritional value of mysore thorn borer (Anoplophorachinensis) and mealworm larva (Tenebriomolitor): Amino acid, fatty acid, and element profiles. Food Chem 2020; 126818.
-
Nielsen R, Nielsen M, Abate TG, Hansen BW, Jepsen PM, Nielsen SL, Buchmann K. The importance of live feed traps–farming marine fish species. Aquac Res 2017;48(6): 2623-2641.
-
Santhanam P, Jeyaraj N, Jothiraj K, Ananth S, Kumar SD, Pachiappan P. Assessing the Efficacy of Marine Copepods as an Alternative First Feed for Larval Production of Tiger Shrimp Penaeusmonodon. Basic and Applied Zooplankton Biology: Springer Nature; 2019. p.293-303.
-
Evjemo JO, Olsen Y. Lipid and fatty acid content in cultivated live feed organisms compared to marine copepods. Hydrobiologia 1997; 358:159–162.
-
Takeuchi T. A review of feed development or early life stages of marine finfish in Japan. Aquaculture 2001; 200: 203-222.
-
Lee S, O'Bryen PJ, Marcus NH, Copepods in Aquaculture. Blackwell Publishing,2005; 269.
-
Nandakumar R, Santhanam PA. Study on Assessing the Feeding, Survival, Fecundity, and Postembryonic Development of Zooplankton Nitocraaffinis (Copepoda: Harpacticoida). Basic and Applied Zooplankton Biology: Springer Nature; 2019. p. 257-276.
-
Lubzens E, Zmora O, Barr Y. Biotechnology and aquaculture of rotifers. Hydrobiologia 2001;446:337-353.
-
Conceicão C, Yúfera M, Makridis P, Morais S, Dinis MT. Live feeds for early stages of fish rearing. Aquac Res 2010;41:613-640.
-
Altaff K, Chandran MR. Sex-related biochemical investigation of the diaptomid, Heliodiaptomus viduus Gurney (Crustacea: Copepoda). Proc Natl Acad Sci India Sect B Biol Sci 1989; 98(3):175-179.
-
Aman S, Altaff K. Biochemical profile of Heliodiaptomus viduus, Sinodiaptomus (Rhinediaptomus) indicus and Mesocyclops aspericornis and their dietary evaluation for postlarvae of Macrobrachium rosenbergii. Zool Stud 2004; 43(2): 267-275.
-
Begum BD, Dharani G, Altaff K. Effect of temperature on the egg production and hatching success of Sinodiaptomus (Rhinediaptomus) Indicus (Calanoida: Copepoda). African J Basic Appl Sci 2012;4(6):216-220.
-
Anandan P, Krishnamurthy R, Altaff K. Studies on different stages of post embryonic development of cyclopoid copepod Apocyclopsdengizicus. Int J Curr Microbiol App Sci 2013;2(2): 20-27.
-
Sampey A, McKinnon A, Meekan G, McCormick M, Glimpse into guts: overview of the feeding of larvae of tropical shore fishes. Mar Ecol Prog Ser 2007;339:243-257.
-
Dharani G, Altaff K. Ultra structure of subitaneous and diapausing eggs of planktonic copepod Sinodiaptomus(Rhinediaptomus) indicus. Curr Sci 2004;87(1):109-112.
-
Altaff K. Breeding biology of freshwater Copepoda Heliodiaptomus viduus (Gurney) and its prospects as live food organisms. Pak J Sci Ind Res 2003;46(3):180-197.
-
Toledo J, Golez MS, Doi M, Ohno A. Use of copepod nauplii during early feeding stage of grouper Eponepheluscoioides. Fish Sci 1999;65:390-397.
-
Garcia AS, Parrish C, Brown J. Growth and lipid composition of Atlantic cod (Gadusmorhua) larvae in response to differently enriched Artemia fransiscana. Fish Physiol Biochem 2008;34:77-94.
-
Koedijk R, Folkvord A, Foss A, Pittman K, Stefansson SO, Handeland S, Imsland K. The influence of first-feeding diet on the Atlantic cod Gadusmorhua phenotype: survival, development and long term consequences for growth. J Fish Biol 2010;77:1-19.
-
Lindley LC, Phelps P, Davis DA, Cummins KA. Salinity acclimation and free amino acid enrichment of copepod nauplii for first-feeding of larval marine fish. Aquaculture 2011; 318: 402-406.
-
Browne RA, McDonald GH, Biogeography of the brine shrimp, Artemia: distribution of parthenogenetic and sexual populations. J Biogeogr 1982;9:331-338.
-
Luizi FS, Gara B, Shields R, Bromage NR, Further description of the development of the digestive organs in Atlantic halibut (Hippoglossushippoglossus) larvae with note on differential absorption of copepod and Artemia prey.Aquaculture 1999;176:101-116.
-
Van Stappen G, Zoogeography. In: Abatzopoulos TH, Beardmore J, Clegg JS, Sorgeloos P (Eds.), Artemia: Basic and Applied Biology. Kluwer Academic Publishers, Dordrecht, The Netherlands 2002; p. 171–224.
-
Bell JG, McEvoy LA, Estevez A, Shields RJ, Sargent JR. Optimizing lipid nutrition in first feeding flatfish larvae. Aquaculture 2003;227:211-220.
-
Liu G, Xu D. Effects of calanoid copepod Schmackeriapoplesia as live food on the growth, survival and fatty acid composition of larvae and juvenile of Japanese Flounder, Paralichtysolivaceus. J Ocean Univ China 2009;8:359-365.
-
Navarro JC, Batty RS, Bell MV, Sargent JR. Effects of two Artemia diets with different contents of polyunsaturated fatty acids on the lipid composition of larva of Atlantic herring (clupeaharengus). J Fish Biol 1993;43:503-515.
-
Duggan IC, Green JD, Shiel RJ. Distribution of rotifer assemblages in North Island, New Zealand, lakes: relationships to environmental and historical factors. Freshwater biology 2002;47:195-206.
-
Yoshida T, Urabe J, Elser JJ. Assessment of ‘top-down’ and ‘bottom-up’ forces as determinants of rotifer distribution among lakes in Ontario, Canada. Ecol Res 2003;18:639-650.
-
Van der Meeren T. Analysis of biochemical components in copepods for evaluation of feed quality for juvenile production of marine fish. Aquaculture 2003;39.
-
Luizi FS, Gara B, Shields R, Bromage NR, Further description of the development of the digestive organs in Atlantic halibut (Hippoglossushippoglossus) larvae with note on differential absorption of copepod and Artemia prey. Aquaculture 1999; 176: 101-116.
-
Bell JG, McEvoy LA, Estevez A, Shields RJ, Sargent JR. Optimizing lipid nutrition in first feeding flatfish larvae. Aquaculture 2003; 227: 211-220.
-
Buskey EJ, Coulter C, Strom S. Locomotory patterns of microzooplankton: potenti potential effects on food selectivity of larval fish. Bull Mar Sci 1993; 53: 29-43.
-
Dahms U. Dormancy in the Copepoda-an overview. Hydrobiologia 1995; 306: 199-211.
-
Holm M, Kiørboe T, Brun P, Licandro P, Almeda R, Hansen B W. Resting eggs in free living marine and estuarine copepods. J Plankton Res2018; 40: 2–15.
-
Pan Y, Souissi A, Sadovskaya I, Hwang J S, and Souissi S. Egg hatching rate and fatty acid composition of Acartiabilobata (Calanoida, Copepoda) across cold storage durations. Aquac Res 2019; 50: 483–489.
-
Puello-Cruz C, Mezo-Villalobos S, González-Rodríguez B, Voltolina D. Culture of the calanoid copepod Pseudodiaptomus euryhalinus (Johnson 1939) with different microalgal diets. Aquaculture 2009; 290 (4): 317-319.
-
Ohs CL, Chang KL, Grabe SW, DiMaggio MA, Stenn E. Evaluation of dietary microalgae for culture of the calanoid copepod Pseudodiaptomus pelagicus. Aquaculture 2010; 307 (4): 225-232.
-
Jepsen PM, Thoisen CV, Cabaret T, Gallemí A, Nielsen SL, Hansen BW. Effects of salinity, commercial salts, and water type on cultivation of the cryptophyte microalgae Rhodomonas salina and the calanoid copepod Acartiatonsa. J World Aquac Soc 2019; 50(1):104-118.
-
Ayadi FY, Rosentrater KA, &Muthukumarappan K. Alternative protein sources for aquaculture feeds. J Aqua Feed Sci Nut 2012; 4(1), 1-26.
-
Alajmi F, Zeng C, Jerry DR. Domestication as a novel approach for improving the cultivation of calanoid copepods: a case study with Parvocalanuscrassirostris. PloS One 2015; 10 (7):1-16.
-
Alajmi F, Zeng, C. Evaluation of microalgal diets for the intensive cultivation of the tropical calanoid copepod, Parvocalanuscrassirostris. Aquac Res 2015;46(5):1025-1038.
-
Almeda R, Calbet A, Alcaraz M, Yebra L, Saiz, E. Effects of temperature and food concentration on the survival, development and growth rates of naupliar stages of Oithonadavisae (Copepoda, Cyclopoida). Mar Ecol 2010; 410: 97-109.
-
Amin RM, Koski M, Båmstedt U, Vidoudez C. Strain-related physiological and behavioral effects of Skeletonemamarinoi on three common planktonic copepods. Mar Biol 2011; 158(9): 1965-1980.
-
Ananthi P, Santhanam P, Nandakumar R, Ananth S, Jothiraj K, Kumar SD, et al. Production and utilization of marine copepods as live feed for larval rearing of tiger shrimp Penaeusmonodon with special emphasis on astaxanthin enhancement. Ind J Nat Sci 2011; 0997.
-
Brugnano C, Guglielmo L, Zagami G. Food type effects on reproduction of hyperbenthic calanoid species Pseudocyclopsxiphophorus Wells, 1967, under laboratory conditions. J Chem Ecol 2008; 24(S1): 111-117.
-
Barroso MV, De Carvalho, Antoniassi R, Cerqueira V. Use of the copepod Acartiatonsa as the first live food for larvae of the fat snook Centropomusparallelus. Aquaculture 2013; 388: 153-158.
-
Brugnano C, Guglielmo L, Zagami G. Food type effects on reproduction of hyperbenthic calanoid species Pseudocyclopsxiphophorus Wells, 1967, under laboratory conditions. J Chem Ecol 2008; 24(S1): 111-117.
-
Calliari D, Andersen CM, Thor P, Gorokhova E, Tiselius P. Salinity modulates the energy balance and reproductive success of co-occurring copepods Acartiatonsa and A. clausi in different ways. Mar Ecol 2006;312:177-188.
-
Camus T, Zeng C. Effects of photoperiod on egg production and hatching success, naupliar and copepodite development, adult sex ratio and life expectancy of the tropical calanoid copepod Acartiasinjiensis. Aquaculture 2008;280(4):220-226.
-
Camus T, Zeng C. Roles of microalgae on total egg production over female lifespan and egg incubation time, naupliar and copepodite survival, sex ratio and female life expectancy of the copepod Bestiolinasimilis. Aquac Res 2010;41(11):1717-1726.
-
Camus T, Zeng C, McKinnon AD. Egg production, egg hatching success and population increase of the tropical paracalanid copepod, Bestiolinasimilis (Calanoida: Paracalanidae) fed different microalgal diets. Aquaculture 2009; 297(4): 169-175.
-
Carotenuto Y, Ianora A, Di Pinto M, Sarno D, Miralto A. Annual cycle of early developmental stage survival and recruitment in the copepods Temorastylifera and Centropagestypicus. Mar Ecol 2006;314:227-238.
-
Carotenuto Y, Ianora A, Miralto A. Maternal and neonate diatom diets impair development and sex differentiation in the copepod Temorastylifera. J Exp Mar Biol Ecol 2011; 396(2): 99-107.
-
Devreker D, Souissi S, Seuront L. Effects of chlorophyll concentration and temperature variation on the reproduction and survival of Temoralongicornis (Copepoda, Calanoida) in the Eastern English Channel. J Exp Mar Biol Ecol 2005; 318(2): 145-162.
-
Drillet G, Rais M, Novac A, Jepsen PM, Mahjoub MS, Hansen BW. Total egg harvest by the calanoid copepod Acartiatonsa (Dana) in intensive culture–effects of high stocking densities on daily egg harvest and egg quality. Aquac Res 2015; 46 (12): 3028-3039.
-
Drillet G, Goetze E, Jepsen M, Højgaard JK, Hansen B. Strain-specific vital rates in four Acartiatonsa cultures, I: strain origin, genetic differentiation and egg survivorship. Aquaculture 2008; 280 (4): 109-116.
-
Ananthi P, Santhanam P, Nandakumar R, Ananth S, Jothiraj K, Kumar SD, Jayalakshmi T. Production and utilization of marine copepods as live feed for larval rearing of tiger shrimp Penaeusmonodon with special emphasis on astaxanthin enhancement. Ind J Nat Sci 2011; 0997.
-
Rajthilak C, Santhanam P, Anusuya A, Pazhanimuthu A, Ramkumar R, Jeyaraj N, et al. Laboratory culture and population growth of brackish water harpacticoid copepod, Nitokraaffinis(Gurney, 1927) under different temperatures, salinities and diets. World J Fish Marine Sci 2014; 6(1): 72-8.
-
Ianora A, Romano G, Carotenuto Y, Esposito F, Roncalli V, Buttino I, et al. Impact of the diatom oxylipin 15S-HEPE on the reproductive success of the copepod Temorastylifera. Hydrobiologia 2011; 666(1): 265-275.
-
Alajmi F, Zeng, C. Evaluation of microalgal diets for the intensive cultivation of the tropical calanoid copepod, Parvocalanuscrassirostris. Aquac Res 2015;46(5):1025-1038.
-
Jeyaraj N, Santhanam P, Raju P, Ananth S, Jothiraj K. Alternative methods for marine harpacticoid copepod, Macrosetella gracilis production in marine fish larviculture. Int J Zool Res 2014;10(1):1-8.
-
Jeyaraj N, Santhanam P. Influence of algal diet on population density, egg production and hatching succession of the calanoid copepod, Paracalanusparvus (Claus, 1863). J Algal Biomass Utln 2013;4(1):1-8.
-
Kaviyarasan M, Santhanam PA. Technique on the Culture and Preservation of Marine Copepod Eggs. Basic Appl Zooplankton Biol 2019;34:197-208.
-
Abolghasem EF, Majid S, Naser A, Hossein O, Shima MA. Laboratory culture of the Caspian Sea calanoid copepod Acartiaclausi(Giesbrecht, 1889) at different salinity levels. World J Fish Marine Sci 2011;3(6): 590-599.
-
Lauer MM, Bianchini A. Chronic copper toxicity in the estuarine copepod Acartiatonsa at different salinities. J Environ Chem Ecotoxicol 2010; 29(10):2297-2303.
-
Leandro SM, Queiroga H, Rodríguez-Graña L, Tiselius P. Temperature-dependent development and somatic growth in two allopatric populations of Acartiaclausi (Copepoda: Calanoida). Mar Ecol 2006;322:189-197.
-
McConville K, Halsband C, Fileman ES, Somerfield PJ, Findlay HS, Spicer JI. Effects of elevated CO2 on the reproduction of two calanoid copepods. Mar Pollut Bull 2013; 73(2): 428-434.
-
Milione M, Zeng C. The effects of algal diets on population growth and egg hatching success of the tropical calanoid copepod, Acartiasinjiensis. Aquaculture 2007; 273(4): 656-664.
-
Puello-Cruz C, Mezo-Villalobos S, González-Rodríguez B, Voltolina D. Culture of the calanoid copepod Pseudodiaptomus euryhalinus (Johnson 1939) with different microalgal diets. Aquaculture 2009;290(4):317-319.
-
Rajkumar M. Suitability of the copepod, Acartiaclausi as a live feed for Seabass larvae (Latescalcarifer Bloch): Compared to traditional live-food organisms with special emphasis on the nutritional value. Aquaculture 2006; 261(2), 649-658.
-
Kâ S, Carotenuto Y, Romano G, Hwang JS, Buttino I, Ianora A. Impact of the diatom-derived polyunsaturated aldehyde 2-trans, 4-trans decadienal on the feeding, survivorship and reproductive success of the calanoid copepod Temorastylifera. Mar Environ Res 2014; 93: 31-37.
-
Santhanam P, Perumal P. Effect of temperature, salinity and algal food concentration on population density, growth and survival of marine copepod Oithonarigida Giesbrecht. Indian J Mar Sci 2012; 41(4), 369-376.
-
Santhanam P, Ananth S, Kumar SD, Sasirekha R, Premkumar C, Jeyanthi S, Devi AS. An Intensive Culture Techniques of Marine Copepod Oithonarigida (Dioithonarigida) Giesbrecht. Basic Appl Zooplankton Biol 2019;36:367-394.
-
Ananth S, Santhanam P. Intensive Culture, Biochemical Composition Analysis, and Use of Zooplankton Tisbe sp.(Copepoda: Harpacticoida) as an Alternative Live Feed for Shrimp Larviculture. Basic Appl Zooplankton Biol 2019;36:329-362.
-
Schipp GR, Bosmans JM, Marshall AJ. Method for hatchery culture of tropical calanoid copepods, Acartia spp. Aquaculture 1999; 174(2): 81-88.
-
Teixeira PF, Kaminski SM, Avila TR, Cardozo AP, Bersano JG, Bianchini A. Diet influence on egg production of the copepod Acartiatonsa (Dana, 1896). Anais da Academia Brasileira de Ciências 2010; 82(2): 333-339.
-
Alajmi F, Zeng, C. Evaluation of microalgal diets for the intensive cultivation of the tropical calanoid copepod, Parvocalanuscrassirostris. Aquac Res 2015;46(5):1025-1038.
-
Wendt I, Thor P. Influence of prey species and concentration on egg production efficiency and hatching success in Acartiatonsa Dana (Copepoda, Calanoida). Crustaceana 2015; 88(6): 675-687.
-
Zhang J, Ianora A, Wu C, Pellegrini D, Esposito F, Buttino I. How to increase productivity of the copepod Acartiatonsa (Dana): effects of population density and food concentration. Aquac Res 2015; 46(12): 2982-2990.
-
Drillet G, Iversen MH, Sørensen TF, Ramløv H, Lund T, Hansen BW. Effect of cold storage upon eggs of a calanoid copepod, Acartiatonsa(Dana) and their offspring. Aquaculture 2006; 254 (4): 714-729.
-
Kaviyarasan M, Santhanam P, Ananth S, Kumar SD, Rao GH, Jayakumar, Kandan, S. Mass production and biochemical composition of marine copepod Pseudodiaptomus Annandalei. Int J Appl Res 2019; 9(2): 41-51.
-
Jayalakshmi T, Santhanam PA Microcosm Study on the Impact of Acidification on Feeding, Survival, Nauplii Production Rate, Post-embryonic Development and Nutritional Composition of Marine Basic Appl Zooplankton Biol 2019;36:395-428.
-
Jothiraj K, Santhanam P. Optimisation of the Culture Conditions of Nannocalanus minor (Copepoda: Calanoida Basic Appl Zooplankton Biol 2019;36:225-246.
-
Kim HJ, Yamade T, Iwasaki K, Marcial HS, Hagiwara A. Phototactic behavior of the marine harpacticoid copepod Tigriopusjaponicus related to developmental stages under various light conditions. J Exp Mar BiolEcol 2019; 518: 151183.
-
Burbano MF, Torres GA, Prieto MJ, Gamboa JH, Chapman FA. Increased survival of larval spotted rose snapper Lutjanusguttatus (Steindachner, 1869) when fed with the copepod Cyclopina sp. and Artemia nauplii. Aquaculture 2020; 519: 734912.
-
Mzozo ZB, Matcher GF, Vine NG. Aspects of the feeding biology of the copepod Pseudodiaptomus hessei (Copepoda: Calanoida) under culture conditions. Aquac Res 2019; 50(4): 1329-1337.
-
Perumal S, Ananth S, Nandakumar R, Jayalakshmi T, Kaviyarasan M, Pachiappan P. Intensive indoor and outdoor pilot-scale culture of marine copepods. Aquaculture 2015; 33-42.
-
Coutteau P, Sorgeloos P. Manipulation of dietary lipids, fatty acids and vitamins in zooplankton cultures. Freshw Biol 1997; 38(3), 501-512.
-
Brown MR, Jeffrey SW, Volkman JK, Dunstan GA. Nutritional properties of microalgae for mariculture. Aquaculture 1997; 151(4): 315-331.
-
Wild KJ, Trautmann A, Katzenmeyer M, Steinga H, Posten C, Rodehutscord M. Chemical composition and nutritional characteristics for ruminants of the micro-algae Chlorella vulgaris obtained using different cultivation conditions. Algal Res 2019; 38: 101385.
-
Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 2008; 19(5): 430-436.
-
Yen HW, Hu IC, Chen CY, Nagarajan D, Chang JS. Design of photobioreactors for algal cultivation. In Biofuels From Algae 2019; 225-256.
-
Enright CT, Newkirk GF, Craigie JS, Castell JD. Growth of juvenile Ostreaedulis L. fed ChaetoceroscalcitransSchütt of varied chemical composition. J Exp Mar Biol Ecol 1986; 96:15–26.
-
Thompson PA, Guo MX, Harrison PJ. The influence of irradiance on the biochemical composition of three phytoplankton species and their nutritional value for larvae of the Pacific oyster (Crassostreagigas). Mar Biol 1993;117:259-268.
-
Brown MR, Miller KA, The ascorbic acid content of eleven species of microalgae used in mariculture. J Appl Phycol 1992; 4: 205-215.
-
Ibbetts SM, Melanson RJ, Park KC, Banskota AH, Stefanova R, Janssen, M. Cultivation of microalgae, effect of light/dark cycles on biomass yield [PhD thesis]. Wageningen: Wageningen University 2002.
-
Parsons TR, Stephens K, Strickland J. On the chemical composition of eleven species of marine phytoplankters. Fish Res 1961;18:1001–1016.
-
Webb KL, Chu FE. Phytoplankton as a food source for bivalve larvae. In: G. D. Pruder, C. J. Langdon and D. E. Conklin (Editors), Proceedings of the Second International Conference on Aquaculture Nutrition: Biochemical and Physiological Approaches to Shellfish Nutrition, Louisiana State University, Baton Rouge 1983; 272–291.
-
Yebra L, Berdalet E, Almeda R, Pérez V, Calbet A, and Saiz E. Protein and nucleic acid metabolism as proxies for growth and fitness of Oithonadavisae (Copepoda, Cyclopoida) early developmental stages. J Exp Mar Biol Ecol 2011;406 (2):87-94.
-
Shah MR, Liang Y, Cheng JJ, Daroch M. Astaxanthin-producing green microalga Haematococcuspluvialis: from single cell to high value commercial products. Front Plant Sci 2016; 7:531.
-
Becker E. Micro-algae as a source of protein. Biotechnol Adv 2007; 25: 207–210.
-
Tibbetts SM, Milley JE, Lall SP. Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J Appl Phycol 2015; 27:1109–1119.
-
Becker EW. Microalgae: biotechnology and microbiology. Cambridge University Press, Cambridge 1994; 293.
-
Shields RJ, Lupatsch I. Algae for aquaculture and animal feeds. J Anim Sci 2012; 21:23–37.
-
Becker EW. Microalgae: biotechnology and microbiology. Cambridge University Press, Cambridge 1994; 293.
-
Tibbetts SM, Milley JE, Lall SP. Apparent protein and energy digestibility of common and alternative feed ingredients by Atlantic cod, Gadusmorhua (Linnaeus, 1758). Aquaculture 2006; 261: 1314–1327.
-
Tibbetts SM, Whitney CG, MacPherson MJ, Bhatti S, Banskota AH, Stefanova R, et al. Biochemical characterization of microalgal biomass from freshwater species isolated in Alberta, Canada for animal feed applications. Algal Res 2015; 11: 435–447.
-
Shields RJ, Bell JG, Luizi FS, Gara B, Bromage NR, Sargent JR. Natural copepods are superior to enriched Artemia nauplii as feed for larvae (Hippoglossushippoglossus) in terms of survival, pigmentation and retinal morphology: relation to dietary essential fatty acids. J Nutr 1999; 129(6):1186–1194.
-
Vizcaíno A, López G, Sáez M, Jiménez J, Barros A, Hidalgo L, Camacho-Rodríguez J, Martínez T, Cerón-García M, Alarcón F. Effects of the microalga Scenedesmusalmeriensisas fishmeal alternative in diets for gilthead sea bream, Sparusaurata, juveniles. Aquaculture 2014; 431:34–43.
-
Kiron V, Phromkunthong W, Huntley M, Archibald I, Scheemaker GD. Marine microalgae from biorefinery as a potential feed protein source for Atlantic salmon, common carp and whiteleg shrimp. Aquac Nutr 2012; 18:521–531.
-
Tulli F, ChiniZittelli G, Giorgi G, Poli BM, Tibaldi E, Tredici MR. Effect of the inclusion of dried Tetraselmissuecicaon growth, feed utilization, and fillet composition of european sea bass juveniles fed organic diets. J Aquat Food Prod Technol 2012; 21:188–197.
-
Langdon CJ, Waldock MJ. The effect of algal and artificial diets on the growth and fatty acid composition of Crassostreagigas spat. J Mar Biol 1981; 61: 431-448.
-
Dunstan GA, Volkman JK, Barrett SM, Leroi JM, Jeffrey SW. Essential polyunsaturated fatty acids from fourteen species of diatom (Bacillariophyceae). Phytochemistry 1994; 35:155-161.
-
Brown MR, Miller KA, The ascorbic acid content of eleven species of microalgae used in mariculture. J Appl Phycol 1992; 4: 205-215.
-
Anderson TR, Pond DW. Stoichiometric theory extended to micronutrients: comparison of the roles of essential fatty acids, carbon, and nitrogen in the nutrition of marine copepods. Limnol Oceanogr 2000; 45: 1162–1167.
-
Sun B, Fleeger JW. Sustained mass culture of Amphiascoidesatopus a marine harpacticoid copepod in a recirculating system. Aquaculture 1995; 136: 313–321.
-
Mckinnon AD, Duggan S, Nichols PD, Rimmer MA, Semmens G, Robino B. The potential of tropical paracalanid copepods as live feeds in aquaculture. Aquaculture 2003; 223:89–106.
-
Helland S, Nejstgaard JC, Fyhn HJ, Egge JK, Båmstedt U. Effects of starvation, season, and diet on the free amino acid and protein content of Calanus finmarchicus fermales. Mar Biol 2003; 143:297–306.
-
Hamre K, Harboe T. Artemia enriched with high n-3 HUFA may give a large improvement in performance of Atlantic halibut (Hippoglossushippoglossus L.) larvae. Aquaculture 2008; 277:239–243.
-
Shields RJ, Lupatsch I. Algae for aquaculture and animal feeds. J Anim Sci 2012; 21:23–37.