IJCRR - 7(22), November, 2015
Pages: 42-51
HYDROLOGICAL DROUGHT FREQUENCY ESTIMATION USING STREAM FLOW DROUGHT INDEX AND MODIFIED GUMBEL METHOD IN UPPER TANA RIVER BASIN
Author: Raphael M. Wambua, Benedict M. Mutua, James M. Raude
Category: Healthcare
[Download PDF]
Abstract:
Objective: To estimate the hydrological drought frequency for upper Tana River basin in Kenya using absolute Stream flow Drought Index (SDI) and modified Gumbel technique. The frequency of drought event of a defined severity for a defined return period is fundamental in planning, designing and operation of water storage systems in the basin.
Materials and Methods: Based on a 41-year (1970-2010) stream flow data, hydrological droughts of 2, 5, 10, 20, 50, 100, 200, 500 and 1000-year return periods are evaluated based on the stream flows, Stream flow Drought Index (SDI) and a simplified mathematical model for hydrological drought estimation which is formulated using Gumbel’s technique.
Results: The absolute SDI increases while the magnitude of the stream flow decreases with return period. The minimum and maximum drought events were exhibited in gauge stations 4AC03 and 4CC03 with absolute SDI ranging from 0.667 to 1.265 and 1.213 to 2.42, and corresponding stream flows of 4.341 to 2.719 and 18.246 to 1.021m3/s for a 2 and 1000-year return period respectively.
Conclusion: A simplified mathematical model for estimating hydrological drought event that uses mean flows of the annual minimum and average of the first three minimum stream flows as input variables is formulated for different return periods for the river basin.
Keywords: Upper tana River basin, SDI, Hydrological drought, Return period, Gumbel technique, Drought frequency, Mathematical model
Citation:
Raphael M. Wambua, Benedict M. Mutua, James M. Raude. HYDROLOGICAL DROUGHT FREQUENCY ESTIMATION USING STREAM FLOW DROUGHT INDEX AND MODIFIED GUMBEL METHOD IN UPPER TANA RIVER BASIN International Journal of Current Research and Review. 7(22), November, 42-51
References:
1. Al-Mashindani, G. Lal, P. B. B. and Mujda, M. F. (1978). A simple version of Gumbel’s method for flood estimation, Hydrological sciences journal, 23 (3): 373-379.
2. Asad, M. A., Ahmeduzzaman, M., Kar, S., Khan, M. A., Rahman, M. N., Islam, S. (2013). Flood frequency modelling using Gumbel’s and Powel’s method for Dudhkumar River, Journal of water resources and ocean sciences, 2(2): 25-28.
3. Carroll, N, Frijters, P, Shields, M. A. (2009). Quantifying the costs of drought, new evidence from satisfaction data, J. of population economics, 22(2): 445-461, doi.org/10.1007/s00148- 007-0174-3
4. Dalezios, N. R., Loukas, A., Vasiliades, L. and Liakopoulos, E. (2000). Severity-duration-frequency analysis of droughts and wet periods in Greece, J. Hydrological sciences, 45(5):751-769.
5. Garcia-Herrera, R., Das, J., Trigo, R. M., Lutterbacher, J. and Fischer, E. M. (2010). A review of a European summer heat wave of 2003, Crit Rev. Environ. Sci. Technol 40 (4); 267-306.
6. Gumbel, E. J. (1958). Statistics of extremes, Columbia University press, New York.
7. IFAD. (2012). Upper Tana catchment natural resource management project report, east and southern Africa division, project management department.
8. Jacobs, J. Angerer, J., Vitale, J., Srinivasan, R., Kaitho, J. and Stuth, J. (2004). Exploring the Potential Impact of Restoration on Hydrology of the Upper Tana River Catchment and Masinga Dam, Kenya, a Draft Report, Texas A & M University.
9. Kyambia, M. M. and Mutua, B. M. (2014). Analysis of drought effect on annual stream flows of River Malewa in the Lake Naivasha basin, Kenya, Int. J. Cur Res Rev, 6(18): 1-6.
10. Lewis, S. L. Brando, P. M. Philips, O. L., van der, G. M. F., Nepstad, D. (2011). The 2010 Amazon drought science 331(6017), 554.doi.org/10.1126/science1200807.
11. Liu L., Hong, Y., Bednarczyk, C. N., Yong, B., Shafer, M. A. Riley, R. and Hocker, J. E .(2012). Hydro-climatological drought analysis and projections using meteorological and hydrological drought indices: A case Study in Blue River Basin, Oklahoma, Water Resour Manage 2012(26): 2761-2779.doi 10.1007/ s11269-012-0044-y.
12. Liu, X, Wang, S., Zhou, Y, Wang, F., Li, W. and Liu, W. (2015). Regionalization and spatiotemporal variation of drought in China based on standardized precipitation evapotranspiration index (1961-2013). Advances in meteorology, 2015: 1-18, doi. org/10.1155/2015/950262.
13. Mishra, A. K. and Singh, V. P. (2010). A review of drought concepts, J. of Hydrology, 391 (1-2): 202-2016, doi.org/10.1016/j. jhydrol.2010.07.012.
14. Mondal, A. and Mujumndar, P. P. (2015). Regional hydrological impacts of climate change implications and for water management in India, hydrological sciences and water security, past, present and future, Proceedings of the 11th Kovacs Colloquium, Paris France, June 2014 IAHS Pub.366(2015), doi:10.5194 piahs-366-34-2015.
15. Otieno, F. A. O. and Maingi, S. M. (2000). Sedimentation problems of Masinga reservoir. In land and water management in Kenya. Eds. Gichuki F. N., Mungai, D. N., Gachere, C. K.
16. Peters, E, Bier, G., van lonen, H. A. J.and Torfs, P. J. J. F. (2006). Propagation and distribution of drought in groundwater catch-ment, J. Hydrology, 321(1/4): 257-275, doi.org/10.1016/j.hydrol.2005.08.004.
17. Saenyi, W. W. (2002). Sediment management in Masinga reservoir, Kenya, PhD thesis (Published), University of Agricultural Sciences (BOKU), Vienna Austria.
18. Schulz, E. F. (1973). Problems in applied hydrology, part 9, water resources publications, Fort Collins, Colorado, U. S. A.
19. Sheffield, J. and Wood, E. (2011). Drought: past problems and future scenarios, Earth scan, London. 20. Sun, L., Mitchell, S. W. and Davidson, A. (2011). Multiple drought indices for agricultural drought risk assessment on the Canadian prairies, Int. J. Climatol. 2011: 1-12, doi: 10.1002/ joc.2385.
21. Tsakiris, I. N. (2009). Assessment of hydrological drought revised, Water Resour Manage 2009(23): 881-897.doi 10.1007/ s11269-008-9305-1.
22. Van loon, A. F. and Laaha, G. (2015). Hydrological drought severity explained by climate and catchment characteristics, J. of hydrology, 526 (2015): 3-14.
23. Van Vliet, M. T. H. Yearsley, J. R. Ludwig, F. Vogele, S., Latternmaier, D. P., Kabat, P (2012). Vulnerability of US and European electricity supply to climate change, J. nature clim change 2(9): 676-681,doi.org/10.1038nclimate1546.
24. Van-loon, A. F. (2015). Hydrological drought explained, WIREs, water 2:359-392. doi:10.1002/wat2.1085.
25. Vidal, J P, Martin, E, Frandisterguy, L, Habets, F., Soubeyroux, J. M., Blanchard, M. and Ballen, M (2010). Multilevel and multiscale drought reanalysis over the France with the Sifanisba-Modcou hydrometeorological site, J. Hydrol Earth Syst Sci 14(3): 459-478 doi.org/10.5194/hes-14-459-2010.
26. Wambua, R. M., Mutua, B. M. and Raude, J. M. (2014). Drought forecasting using indices and Artificial Neural Networks for upper Tana River basin, Kenya-A review concept, J. of Civil & Environmental Engineering, 4(2): 1-12.doi 10.4172/2165- 784X.1000152.
27. Wilschut, L. I. (2010). Land use in the upper Tana: Technical report of a remote sensing based land use map. In green water credits report 9 edited by Mcmillan B., Kauffmann, S. and De Jon, R. Wageningen, ISRIC-world soil information.
28. WRMA. (2010). Physiological survey in the upper Tana catchment, a natural resources management project report, Nairobi.
|