IJCRR - 7(22), November, 2015
Pages: 29-37
PROXY MODEL FOR OPTIMIZATION OF BIODEGRADATION OF PYRENE BY CORYNEBACTERIUM SP AND PSEUDOMONAS PUTIDA
Author: Azeez Taofik Oladimeji, Owabor Chiedu Ngozi, Nwakaudu Madueke Stanley, Opebiyi Samson
Category: Healthcare
[Download PDF]
Abstract:
A proxy model for optimization of operating conditions (pyrene concentration, biodegradation time and aeration) for biodegradation of pyrene by Corynebacterium sp and Pseudomonas putida was aimed to be investigated. The proxy model for biodegradation of pyrene with activity of Corynebacterium sp and Pseudomonas putida was developed from experimental data using response surface methodology (RSM) with central composite design (CCD) of the design of experiments software. Corynebacterium sp degraded 96.71 % of pyrene at optimal conditions of 68.16 mg/L of pyrene concentration, biodegradation time of 82.57 hours and aeration condition of 3.0125vvm, while Pseudomonas putida degraded 93.84 % of pyrene at optimal conditions of 69.90 mg/L of pyrene concentration, biodegradation time of 84 hours and aeration condition of 3.4995 vvm. The developed proxy model of biodegradation of hazardous pyrene disposal under the stated operating conditions is fit and acceptable for optimization.
Keywords: Pyrene, Biodegradation, Optimization, Response surface methodology, Proxy model
Citation:
Azeez Taofik Oladimeji, Owabor Chiedu Ngozi, Nwakaudu Madueke Stanley, Opebiyi Samson. PROXY MODEL FOR OPTIMIZATION OF BIODEGRADATION OF PYRENE BY CORYNEBACTERIUM SP AND PSEUDOMONAS PUTIDA International Journal of Current Research and Review. 7(22), November, 29-37
References:
1. Abed R. M. M., Safi N.M.D., Koster J., de Beer D., El-Aahha Y., Rullkoter J. and Garcia-Piche F. (2002). Microbial diversity of a heavily polluted microbial mat and its community changes following degradation of petroleum compounds. J. Appl. Environ.Microbiol., 68: 1674 - 1683.
2. Azeez, T. O. (2012). Biodegradation of Pyrene Using Corynebacteria sp and Pseudomonas Putida in Contaminated Water. International Journal of Biotechnology Research. 5 (1): 31-38.
3. Azeez, T. O., Arinkoola, A.O., Salam, K.K and Nwakaudu, M.S. (2014). Effective Diffusivity and Kinetics Model for Biodegradation of PAHs in a Saturated Porous Matrix. Journal of Emerging Treads in Engineering and Applied Sciences (JETEAS), 5 (1): 62 - 69.
4. Azeez, T. O., Onukwuli O. D., Araromi, D. O., Arinkoola, A. O., Salam, K. K., Iwuji, S. C., Ejeta, K. O., Dawodu, B. F., Ayinde, K. A, Nwacha, R. and Azeez, F. O. (2013). Optimization of Bioremediation of Cheese Whey with the Activity of K. Pneumonia Using Response Surface Methodology. International Journal of Science and Emerging Technology with Latest Trends (IJSETT), 11(1): 10 - 21.
5. De Lima C. J. B., Coelho L. F. and Contiero J. (2010). The Use of Response Surface Methodology in Optimization of Lactic Acid Production: Focus on Medium Supplementation, Temperature and pH Control, Food Technol. Biotechnol. 48 (2): 175 –181.
6. Dua M., Singh A., Sethunathan N. and Johri A. K. (2002). Biotechnology and bioremediation: successes and limitations. J. Appl. Microbiol. Biotechnol., 59: 143-152.
7. El-Gendy N. S., Moustafa Y. M., Habib S. A. and Ali S. (2010). Evaluation of Corynebacterium variabilis Sh42 as a degrader for different poly aromatic compounds. Journal of American Science, 6(11): 343 - 356.
8. Hu Y., Ren F., Zhou P., Xiam. and Liu S. (2003). Degradation of pyrene and characterization of Saccharothrix sp. PYX-6 from the oligotrophic Tianchi Lake in Xinjiang Uygur Autonomous Region, China. Chinese Science Bulletin, 48 (20): 2210 - 2215. doi: 10.1360/03wc0281.
9. Johnsen A. R., Wick L. Y. and Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Poll., 133: 71 – 84
10. Jones M. D, Singleton D. R., Carstensen D. P. et al (2008). Effect of incubation conditions on the enrichment of pyrene-degrading bacteria identified by stable-isotope probing in an aged, PAH contaminated soil. Microb. Ecol., 56: 341 – 349.
11. Kim S-J., Jones R. C., Cha C-J., Kweon O., Edmondson R. D., Cerniglia C. E. (2004). Identification of proteins induced by polycyclic aromatic hydrocarbon in Mycobacterium vanbaalenii PYR-1 using two-dimensional polyacrylamide gel electrophoresis and de novo sequencing methods. Proteomics, 4: 3899 - 3908.
12. Lease C. W. M., Bentham R. H., Gaskin S. E. and Juhasz A. L. (2011). Isolation and Identification of Pyrene Mineralizing Mycobacterium spp. from Contaminated and Uncontaminated Sources. Applied and Environmental Soil Science, 2011: 1 – 11. doi:10.1155/2011/409643
13. Liang Y., Gardner D. R., Miller C. D., Chen D., Anderson A. J., Weimer B. C. and Sims R. C. (2006). Study of Biochemical Pathways and Enzymes Involved in Pyrene Degradation by Mycobacterium sp. Strain KMS^. Applied and Environmental Microbiology, 72 (12): 7821 - 7828. doi:10.1128/AEM.01274-06.
14. Mahanty B., Pakshirajan K. and Venkata Dasu V. (2008). Biodegradation of pyrene by Mycobacterium frederiksbergense in a two-phase partitioning bioreactor system. Bioresource Technology, 99: 2694 – 2698. doi:10.1016/j.biortech.2007.05.042
15. Nwabanne, J.T. and Ekwu, F. C. (2013). Experimental Design Methodology Applied to Bleaching of Palm Oil Using Local Clay. International Journal of Applied Science and Technolog., 3(4): 69 - 77.
16. Obayori O. S., Adebusoye S. A., Ilori M. O. Oyetibo G. O. Omotayo A. E. and Amund O. O. (2009). Effects of Corn Steep Liquor on Growth Rate and Pyrene Degradation by Pseudomonas strains. Curr Microbiol, 60: 407 – 411. doi: 10.1007/s00284- 009-9557-x
17. Owabor C. N., Agarry S. E. and Azeez T. O. (2010). Development of a Transport Model for the Microbial Degradation of Polycyclic Aromatic Hydrocarbons in a Saturated Porous Medium. Journal of the Nigerian Association of Mathematical Physics (J of NAMP), 16: 317 - 324.
18. Palmroth, R.T., U. Munster, J. Pichtel and A. Puhakka, (2005). Metabolic responses of microbiota diesel fuel addition in vegetated soil. J. Biodegradation, 16: 91 - 101.
19. Pazos, F., D. Guizas, A. Valencia and V. De Lorenzo (2004). Meta Router: bioinformatics for bioremediation. J. Nucleic Acids Res., 33: 53 - 65. doi:10.1016/j.jhazmat.2009.11.055
20. Rentz J. A, Alvarez P. J.J. and Schnoor J. L. (2005). Benzo[a] pyrene co-metabolism in the presence of plant root extracts and exudates: Implications for phytoremediation. Environmental Pollution 136: 477 - 484. doi:10.1016/j.envpol.2004.12.034.
21. Rentz J. A, Alvarez P. J.J. and Schnoor J. L. (2008). Benzo[a] pyrene degradation by Sphingomonas yanoikuyae JAR02. Environmental Pollution 151 (2008) 669 – 677. doi:10.1016/j.envpol.2007.02.018
22. Sanghvi S. (2005). Bioremediation of polycyclic aromatic hydrocarbon contamination using Mycobacterium vanbaalenii MMG 445. eJournal, 1: 1 - 7.
23. Shokrollahzadeh S., Golmohammad F. and Shokouhi H. (2012). Study of Sphingopyxis Isolates in Degradation of Polycyclic Aromatic Hydrocarbons. Chemical Engineering Transactions. 27: 55-60. doi: 10.3303/Cet1227010
24. Singh O. V. and Jain R. K. (2003). Phytoremediation of toxic aromatic pollutants from soil. Appl Microbiol Biotechnol., 63:128 – 135. doi: 10.1007/s00253-003-1425-1
25. ?wietlik R., Kowalczyk D. and Dojlido J. (2002). Influence of Selected Physicochemical Factors on the Degradation of PAHs in Water. Polish Journal of Environmental Studies, 11(2): 165 - 169.
26. Valent?´n L., Lu-Chau T. A., Lo´pez C., Feijoo G., Moreira M.T. and Lema J.M. (2007). Biodegradation of dibenzothiophene, fluoranthene, pyrene and chrysene in a soil slurry reactor by the white-rot fungus Bjerkandera sp. BOS55. Process Biochemistry, 42: 641 – 648. doi:10.1016/j.procbio.2006.11.011
27. Van Hamme, J. D., A. Singh and O.P. Ward, (2003). Recent advances in petroleum microbiology. J. Microbiol. Molec. Biol. Rev., 67: 503 - 549.
28. Viggiani, A., Siani L., Notomista E., Birolo L., Pucci P. and Di Donato A. (2004). The role of the conserved residues His-246, His-199 and Tyr-255 in the catalysis of catechol 2, 3-dioxygenase from Pseudomonas stutzeri OX1. J. Biol. Chem., 279: 48630 - 48639.
29. Vila, J., Lopez Z., Sabate J., Minguillon C., Solanas A. M. and Crifoll M. (2001). Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. Strain AP1: action of isolates on two and three-ring polycyclic aromatic hydrocarbons. J. Appl. Environ. Microbiol., 67: 5497-5505. doi: 10.1128/ AEM.67.12.5497-5505.2001
30. Wang Y., Liu C.S., Li F.B., Liu C.P., and Liang J. B. (2009). Photodegradation of polycyclic aromatic hydrocarbon pyrene by iron oxide in solid phase. Journal of Hazardous Materials 162 (2009) 716–723. doi:10.1016/j.jhazmat.2008.05.086
|