IJCRR - 8(13), July, 2016
Pages: 42-49
SYNTHESIS AND APPLICATIONS OF SUGAR FLUORINATED NUCLEOSIDES
Author: Mohamed Ibrahim Elzagheid
Category: Healthcare
[Download PDF]
Abstract:
In this review, different methods that have been used for the synthesis of 1’-, 2’-, 3’-, 4’- and 5’-sugar fluorinated nucleosides and their analogous are presented and different fluorinating agents are listed. Highlighted examples of the sugar fluorinated nucleosides that make a great impact on chemistry, biochemistry, and drug discovery are also elaborated. This review has shown that introduction of a fluorine atom in different positions within the sugar structure of the nucleoside improves their reactivity and properties.
Keywords: Nucleosides synthesis and applications, Sugar fluorinated nucleosides, Fluorinating agents
Citation:
Mohamed Ibrahim Elzagheid. SYNTHESIS AND APPLICATIONS OF SUGAR FLUORINATED NUCLEOSIDES International Journal of Current Research and Review. 8(13), July, 42-49
References:
1. Turner M A, Yang X, Yin D, Kuczera K, Borchardt R T, Howell P L. Structure and function of S-adenosylhomocysteine hydrolase. Cell Biochem Biophys 2000; 33: 101-125.
2. Kitade Y, Kozaki C, Miwa T, Nakanishi M. Synthesis of basemodified noraristeromycin derivatives and their inhibitory activity against human and plasmodium falciparum recombinant S-adenosylhomocysteine hydrolase. Tetrahedron 2002; 58: 1271-1277.
3. Anderson K S. Perspectives on the molecular mechanism of inhibition and toxicity of nucleoside analogs that target HIV-1 reverse transcriptase. Biochimica et Biophysica Acta 2002; 1587: 296-299.
4. Welch J T. Advances in the preparation of biologically active organofluorine compounds. Tetrahedron 1987; 43 (14): 3123- 3197.
5. Wilkinson J A. Recent advances in the selective formation of the carbon-fluorine bond Chem Rev 1992; 92 (4): 505-519.
6. Purrington S T, Kagen B S, Patrick T B. Application of elemental fluorine in organic synthesis. Chem Rev 1986; 86 (6): 997- 1018.
7. Schlosser M. Introduction of fluorine into organic molecules: why and how. Tetrahedron 1978; 34 (1): 3-17.
8. Ma T, Lin J-S, Gary N M, Cheng Y-C, Chu C K. Synthesis and anti-hepatitis B virus activity of 9-(2-deoxy-2-fluoro-β-larabinofuranosyl) purine nucleosides. J Med Chem 1997; 40: 2750–2754.
9. Kalota A, Karabon L, Swider CR, Viazovkina E, Elzagheid MI, Damha MJ, and Gewirtz AM. 2’-Deoxy-2’-fluoro-β-Darabinonucleic acid (2’F-ANA) modified oligonucleotides (ON) effect highly efficient, and persistent, gene silencing. Nucleic Acids Research 2006; 34 (2): 451–461.
10. Takamatsu S, Katayama S, Hirose N, De Cock E, Schelkens G, Demillequand M, Brepoels J, and Izawa K. CONVENIENT SYNTHESIS OF FLUORINATED NUCLEOSIDES WITH PERFLUOROALKANESULFONYL FLUORIDES. Nucleosides Nucleotides and Nucleic Acids 2002; 21(11-12):849-861.
11. Yamada K, Matsumoto N, and Hayakawa H. Stereoselective Synthesis of 2-Deoxy-2-Fluoroarabinofuranosylα-1-Phosphate and Its Application to the Synthesis of 2′-Deoxy-2′-Fluoroarabinofuranosyl Purine Nucleosides by a Chemo-Enzymatic Method. Nucleosides Nucleotides and Nucleic Acids 2009; 28 (11-12): 1117-1130.
12. Pankiewicz K W. Fluorinated nucleosides. Carbohydr Res 2000; 327: 87-105.
13. Kodama T, Matsuda A, Shuto S. The first synthesis of 1’-fluoronucleosdies. Nucleic Acids Symposium Series 2006; 50: 3-4.
14. Herdewijn P, Van Aerschot A, Kerremans L. Synthesis of nucleosides fluorinated in the sugar moiety. The application of diethylaminosulfur trifluoride to the synthesis of fluorinated nucleosides. Nucleosides, Nucleotides 1989; 8(1): 65-96.
15. Robins M J, Fouron Y, Mengel R. Adenosine 2′, 3′-ribo-epoxide. Synthesis, intramolecular degradation, and transformation into 3′-substituted xylofuranosyl nucleosides and the lyxo-epoxide. J Org Chem 1974; 39: 1564-1570.
16. Miyai K, Robins RK, Tolman RL. Synthesis of 9-(3-deoxy-3- fluoro-β-D-arabinofuranosyl) adenine. J Med Chem 1972; 15: 1092-1994.
17. Kissman HM, Weiss MJ. 5-Deoxy-5-fluoro-D-ribofuranosyl Derivatives of Certain Purines, Pyrimidines and 5, 6-Dimethylbenzimidazole. J Am Chem Soc 1958; 80 (20): 5559–5564.
18. Kowollik G, Gaertuer K, Langen P. Nucleosides of fluorocarbohydrates. XIII. Synthesis of 3’ deoxy 3’ fluorouridine. J. Carbohydr Nucl Nucl 1975; 2 (3): 191-195.
19. Lee S, Uttamapinant C, Verdine G L. A concise synthesis of 4’-fluoronucleosides. Org Lett 2007; 9 (24): 5007-5009. And references therein.
20. Kodama T, Matsuda A, Shuto S. Synthesis of 1’-fluorouracil nucleosides as potential antimetabolites. Tetrahedron 2006; 62: 10011-10017.
21. Kodama T, Shuto S, Matsuda A. Synthesis of pyrimidine 1’-fluoronucleosides. Tetrahedron Lett 2006; 47: 4429-4432.
22. Liu P, Sharon A, Chu CK. Fluorinated nucleosides. J Fluor Chem 2008; 129 (9): 743-766.
23. Reichmann U, Watanabe KA, Fox JJ. A practical synthesis of 2-deoxy-2-fluoro-D- arabinofuranose derivatives. J Carbohydr Res 1975; 42 (2): 233-240.
24. Watanabe KA, Su TL, Klein RS, Chu CK, Matsuda A, Chun MW, Lopez C, Fox JJ. Synthesis of antiviral nucleosides: 5-substituted 1-(2-deoxy-2-halogeno-β-D-arabinofuranosyl) cytosine and -uracil. Some structure-activity relationships. J Med Chem 1983; 26 (2): 152-156.
25. C. H. Tann, P. R. Brodfuehrer, S. P. Brundidge, C. Sapino, H. G. Howell, Fluorocarbohydrates in synthesis. An efficient synthesis of 1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)-5-iodouracil (β-FIAU) and 1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl) thymine (β -FMAU). J Org Chem 1985; 50: 3644-3647.
26. Ma T, Pai SB, Zhu XL, Lin JS, Shanmu K, Du J, Wan C, Kim H, Newton MG, Cheng YC, Chu CK. Structure--activity relationships of 1-(2-Deoxy-2-fluoro-β-L arabinofuranosyl)pyrimidine nucleosides as anti-hepatitis B virus agents. J Med Chem 1996; 39 (14): 2835-2843.
27. Du J, Choi Y, Lee K, Chun BK, Hong JH, Chu CK, A Practical Synthesis of L-FMAU from L-Arabinose. Nucleosides Nucleotides 1999; 18: 187-192.
28. Elzagheid M I, Viazovkina E, Damha M J. Synthesis of protected 2’-deoxy-2’-fluoro-β-D-arabinonucleosides.Current Protocols in Nucleic Acid Chemistry 2002; 1.7.1–1.7.19. And references therein.
29. Elzagheid M I, Viazovkina E, Damha M J. A new synthesis of 9-(2-deoxy-2-fluoro-β-D-arabinofuranosyl) guanine. Nucleosides, Nucleotides and Nucleic Acids 2003; 22: 1339-1342. And references therein.
30. Damha M J, Wilds C J, Noronha A, Brunker I, Brokow G, Arion D, Parniak M A. Hybrids of RNA and arabinonucleic acids (ANA and 2’F-ANA) are substrates of ribonuclease H. J AmChem Soc 1998; 120 (49): 12976-12977.
31. Wilds C J, Damha M J. 2’-Deoxy-2’-fluoroarabinonucleosides and oligonucleotides (2’F-ANA): synthesis and physicochemical studies. Nucleic Acids Res 2000; 28: 3625–3635.
32. Lok C N, Viazovkina E, Min K L, Nagy E, Wilds C J, Damha M J, Parniak M A. Potent gene-specific inhibitory properties of mixed-backbone antisense oligonucleotides comprised of 2’-deoxy-2’-fluoro-D-arabinose and 2’-deoxyribose nucleotides. Biochemistry 2002; 41 (10): 3457-3467.
33. Viazovkina E, Mangos M M, Elzagheid M I, Damha M J. solid-phase synthesis of 2′-Deoxy-2′-fluoro-β-Doligoarabinonucleotides (2′F-ANA) and their phosphorothioate derivatives. Current Protocols in Nucleic Acid Chemistry 2002; 4.15.1-4.15.22.
34. Sivets G G. Syntheses of 2’-deoxy-2’-fluoro-β-Darabinofuranosyl purine nucleosides via selective glycosylation reactions of potassium salts of purine derivatives with glycosyl bromide. Tetrahedron Lett 2016; 57: 268-271.
35. Shakya N, Srivastav N C, Bhavanam S, Tse C, Desroches N, Agrawal B, Kunimoto D Y, and R. Kumar R. Discovery of novel 5-(ethyl or hydroxymethyl) analogs of 2’-‘up’ fluoro (or hydroxyl) pyrimidine nucleosides as a new class of Mycobacterium tuberculosis Mycobacterium bovis and Mycobacterium Avium inhibitors. Bioorganic and Med Chem 2012; 20: 4088-4097.
36. Brown K, Weymouth-Wilson A, and Linclau B. A linear synthesis of gemcitabine. Carbohydrate Res 2015; 406: 71-75.
37. Qui X-I, Xu X-H, and Qing F-L. Recent advances in the synthesis of fluorinated nucleosides. Tetrahedron 2010; 66: 789-843.
38. Mikhailopulo I A, Poopeiko N E, Prikota T I, Sivets G G, Kvasyuk E I, Balzarini J, De Clercq E. Synthesis and antiviral and cytostatic properties of 3′-deoxy-3′-fluoro- and 2′-azido-3′-fluoro2′,3′-dideoxy-D-ribofuranosides of natural heterocyclic bases. J Med Chem 1991; 34 (7): 2195-2202.
39. Hirschman R E, Miller R, Wood J, Jones R E. The Reaction of Epoxides with Anhydrous Hydrogen Fluoride in the Presence of Organic Bases. The Preparation of 9-α-Fluoro-4-pregnene-11β, 17α, 21-Triol 3, 20-Dione 21-Acetate and Its 1-Dehydro Analog. J Am Chem Soc 1956; 78 (19): 4956-4959.
40. Pankiewicz K W, and Watanabe K A. A synthesis of 2’-fluoroand 3’-fluoro-substituted purine nucleosides via a direct approach. Nucleosides and Nucleotides as Antitumor and Antiviral Agents, Plenum Press, New York, 1993; 55-71.
41. D. V. Burko, Biotechnology in Medicine, Food Stuffs, Biocatalysis, Environment and Biogeotechnology, eds S. D. Varfolomeev, G. E. Zaikov, L. P. Krylova. Nova Science Publisher, New York, 2010; 1-13.
42. Khalil A, Mathe C, and Perigaud C. Rapid synthesis of 2’,3’-dideoxy-3’-β-fluoro-pyrimidine nucleosides. Bioorganic Chem 2010; 38: 271-274.
43. Kowollik G, Schutt M, Langen P, Demirow G. Nucleoside von Fluorzuckern; Synthese der 5′-Desoxy-5′-fluor-Derivate von 6-Aza-uridin und Ribofuranosyl-thymin. Z Chem 1972; 12 (3): 106-107.
44. Middleton W J. New fluorinating reagents. Dialkylaminosulfur fluorides. J Org Chem, 1975; 40 (5): 574-578.







|