IJCRR - 8(17), September, 2016
Pages: 50-59
ROLE OF MIRNA-122 AND MIRNA-200B IN INTRATUMOR HETEROGENEITY FORMATION AND HUMAN BREAST CANCER PROGNOSIS
Author: Lukianova N., Borikun T., Yalovenko T., Chekhun V.
Category: Healthcare
[Download PDF]
Abstract:
Aim: To determine the features of miR-122 and -200b expression signature in BC patients due to major clinical-pathological characteristics of the disease.
Methodology: The expression levels of miR-122 and -200b and ER, PR, Her2/neu, Ki-67, E-cadh, N-cadh, FTH1, Hepc were analyzed in cancer tissue and sera of BC patients. Relative expression levels of the miR-122 and -200b were examined using qRT-PCR (Quantitative Reverse Transcription PCR), protein expression was measured by immunohistochemical analysis.
Results: Correlation between miR-122 and -200b expression clinical-pathological characteristics of BC was established. Prognostic value of miR-122 and -200b was estimated.
Discussion and Conclusion: Changes of miR-122 and -200b expression in tumor tissue and sera of BC patients provide information about major clinical-pathological characteristics of BC.
Keywords: miRNA, Breast cancer, Prognosis
Citation:
Lukianova N., Borikun T., Yalovenko T., Chekhun V.. ROLE OF MIRNA-122 AND MIRNA-200B IN INTRATUMOR HETEROGENEITY FORMATION AND HUMAN BREAST CANCER PROGNOSIS International Journal of Current Research and Review. 8(17), September, 50-59
References:
1. Chekhun VF, Sherban SD, Savtsova ZD Tumor cell heterogeneity. Experimental oncology 2013; 35 (3): 154-162.
2. Janga SC, Mittal N. Construction, structure and dynamics of post-transcriptional regulatory network directed by RNA-binding proteins. Adv Exp Med Biol 2011; 722: 103-17.
3. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136(2): 215-33.
4. Bagnyukova TV, Pogribny IP, Chekhun VF. MicroRNAs in normal and cancer cells: a new class of gene expression regulators. Exp Oncol 2006; 28(4): 263-269.
5. Iorio MV, Croce CM. MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol 2009; 27:5848-5856.
6. Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak V, ChechunV, Pogribny I. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Molecular cancer therapeutics 2008; 47(7): 2152- 2159.
7. Blenkiron C, Miska EA. miRNAs in cancer: approaches, aetiology, diagnostics and therapy. Hum Mol Genet 2007; 16(1): 106- 13.
8. Ferracin M, Veronese A, Negrini, M. Micromarkers: miRNAs in cancer diagnosis and prognosis. Expert review of molecular diagnostics 2010; 10(3): 297-308.
9. Aye Thike, Mei Jiuan Chng, Stephanie Fook-Chong, Puay Hoon Tan, A. Immunohistochemical expression of hormone receptors in invasive breast carcinoma: correlation of results of H-score with pathological parameters. Pathology 2001; 33(1): 21-25.
10. Livak K, Schmittgen T, Analysis of relative gene expression data using real–time quantitative PCR and the 2−CT method. Methods 2001; 25: 402–408.
11. Filipowicz W, Jaskiewicz L, Kolb FA et al. Post-transcriptional gene silencing by siRNAs and miRNAs. Current opinion in structural biology 2005; 15(3): 331-341.
12. Wang B, Wang H, Yang Z. MiR-122 Inhibits Cell Proliferation and Tumorigenesis of Breast Cancer by Targeting IGF1R. PLoS ONE 2012; 7(10).
13. Berber U, Yilmaz I, Narli G, Haholu A, Kucukodaci Z, Demirel D. miR-205 and miR-200c: Predictive micro RNAs for lymph node metastasis in triple negative breast. Journal of breast cancer 2014; 17(2):143-148.
14. Chekhun VF. Cancer epigenetics. Experimental oncology 2008; 30 (3): 170-170.
15. Radojicic J, Zaravinos A, Vrekoussis T, Kafousi M, Spandidos DA. MicroRNA expression analysis in triple-negative (ER, PR and Her2/neu) breast cancer. Cell Cycle 2015; 10: 507–517.
16. Lukyanova NY, Rusetskya NV, Tregubova NA, Chekhun VF. Molecular profile and cell cycle in MCF-7 cells resistant to cisplatin and doxorubicin. Experimental Oncology 2009; 31(2): 87-91.
17. Wu X, Somlo G, Yu Y, Palomares M R, Li AX, Zhou W. et al. De novo sequencing of circulating miRNAs identifies novel markers predicting clinical outcome of locally advanced breast cancer. Journal of translational medicine 2012; 10:1186-1192.
18. Tryndyak VP, Pogribny IP, Kovalchuk O, Chechun VF, Lukyanova NY. Epigenetic profiling of multidrug-resistant human MCF-7 breast adenocarcinoma cells reveals novel hyper-and hypomethylated targets. Molecular cancer therapeutics 2007; 20(3): 1089-1098.
19. Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer science 2010; 101(10): 2087-2092.
20. Pellinen T, Arjonen A, Vuoriluoto K, Kallio K, Fransen JA, Ivaska J. Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of β1-integrins. The Journal of cell biology 2006; 173(5): 767-780.
21. Ye F, Tang H, Liu Q, Xie X, Wu M, Liu X, et al. miR-200b as a prognostic factor in breast cancer targets multiple members of RAB family. Journal of translational medicine 2014; 12(1).
22. Mongroo PS, Rustgi AK: The role of the miR-200 family in epithelial-mesenchymal transition. Cancer Biol Ther 2010, 10:219– 222.
23. Feng B, Wang R, Chen L-B: Review of miR-200b and cancer chemosensitivity. Biomed Pharmacother 2012, 66:397–402.
24. Castoldi M, Spasic MV, Altamura S, Elmén J, Lindow M, Kiss, J, et al. The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice. The Journal of clinical investigation 2011; 121(4): 1386-1396.
25. Chekhun VF, Lukianova NYu, Demash DV, Borikun TV, Chekhun SV, Shvets YV. Manifestation of key molecular genetic markers in pharmacocorrection of endogenous iron metabolism in MCF-7 and MCF-7/DDP human breast cancer cells. CellBio 2013; 2 (4): 217-227.
26. Lukianova NYu, Yalovenko TM, Chekhun VF. Features of hepcidin expression in breast cancer patients. Oncology 2015; 17(4): 258-262.
27. Humphries B, Wang Z, Oom A L, Fisher T, Tan D, Cui Y, et al. MicroRNA-200b targets protein kinase Cα and suppresses triple-negative breast cancer metastasis. Carcinogenesis2014; 35(10): 2254-2263
28. Yu J, Lu Y, Cui D, Li E, Zhu Y, Zhao Y, et al. miR-200b suppresses cell proliferation, migration and enhances chemosensitivity in prostate cancer by regulating Bmi-1. Oncology reports 2014; 31(2): 910-918.
29. Micalizzi DS, Farabaugh SM, Ford HL. Epithelial-mesenchymal transition in cancer: Parallels between normal development and tumor progression. J. Mammary Gland Biol. Neoplasia 2010; 15: 117–134.
30. Hill L, Browne, G, Tulchinsky E. ZEB/miR-200 feedback loop: At the crossroads of signal transduction in cancer. Int. J. Cancer J. Int. Cancer 2013; 132:745–754.
31. Chekhun S, Bezdenezhnykh N, Shvets J, Lukianova N. Expression of biomarkers related to cell adhesion, metastasis and invasion of breast cancer cell lines of different molecular subtype. Experimental oncology 2013; 35(3): 174-179.






|