ABSTRACT

Coccidiosis is an intestinal disease of chickens in which the causes include various species of protozoan parasites that located within the genus *Eimeria*. Diagnosis and genetic characterization of different species of *Eimeria* are central dogma to the preventive, resistance, and control of coccidiosis. The aim of the present study was to identify different avian *Eimeria* species that considered the causal agents of avian coccidiosis in each of the Kerbala and Babylon provinces, Iraq.

The present study observations were revealed increasing and decreasing the percentages of infection with coccidiosis during different months of a year and that due to the large change in temperature and humidity in Iraq, so the results showed that the highest percentage of infection in both of Kerbala and Babylon provinces were in December (23.12%) and the lowest percentage in July (1.87%).

A total of 200 samples of feces and intestines were collected from chickens that suspected to infection with *Eimeria* during the period from August 2013 to July 2014 and the results revealed that 160 samples were positive depending on the macroscopic and microscopic examination which in turn have undergone the second stage of the examination for the purpose of qualitative accurate diagnosis of the species of *Eimeria* that causing coccidia in chickens using of molecular methods for the target region ITS1 nucleic acid DNA encoded ribosomal RNA, these techniques depend on qRT-PCR technique, which diagnosed three species of *Eimeria* includes *E. tenella* which formed the largest proportion of the total positive samples (66.8%) then the species *E. necatrix* which accounted for (30%) and finally the species *E. maxima* which form (3.13%). Therefore, using of the molecular methods such as REAL-TIME PCR which characterized by highly accuracy, but these methods expensive economically compared to routine methods.

Key Words: Avian Coccidiosis, *Eimeria*, Oocysts, RT-PCR, Iraq

INTRODUCTION

Avian coccidiosis is one of the most important diseases affecting the intensive poultry industry worldwide. Coccidia are almost usually found wherever chickens are raised and it is exceedingly rare to find a commercial chicken flock not affected. The infection causes tissue damage in the intestinal tract leading to interruption in digestive processes, blood loss, and increased susceptibility to other diseases, subclinical enteric infection, and sub acute mortality, the disease is treated by used of anticoccidial drugs that added in the feed or vaccination (1, 2, 3, 4). There are nine commonly recognized species of chicken coccidia, *Eimeria acervulina*, *E. brunetti*, *E. maxima*, *E. mitis*, *E. necatrix*, *E. praecox*, *E. mevati*, *E. hagani* and *E. tenella*, each *Eimeria* species develops in a particular location within the chicken digestive tract with some interfere seen between these species(5).

The specific identification of *Eimeria* species and strains is important for diagnosis and domination, as well as for epidemiology and biological studies of the population (6). Depended on the routine tests, the *Eimeria* species have been identified by morphology and/or morphometry of their sporocysts and oocysts as well as their modes of development, and assessing the site and extent of the pathological lesions in the intestine of chicken (7, 8). However, these ways are costly, time-consuming, require...
skilled personnel and can be unreliable under the circumstances of mixed field infections, particularly when the overlap in biological and morphological characteristics makes the unambiguous identification and differentiation of *Eimeria* species impossible (9, 10).

Molecular techniques have some advantages over traditional methods in that they rely only on the genomic sequence of the *Eimeria* species, several techniques based on the polymerase chain reaction using primers that specifically targeting different regions of the *Eimeria* genome have been described (5, 11, 12, 13, 14, 15). For molecular detection of *Eimeria* species in chickens, the DNA sequence of the first and second internal transcribed spacers (ITS-1 and ITS-2) of the nuclear DNA, which separate the ribosomal genes, is used most frequently, besides its heterogeneity in both sequence length and base composition of the ITS sequence, the rDNA is a member of a multiple copy gene family and provides large numbers of potential PCR targets (16, 17, 18, 19, 20). Nevertheless, the practical implementation of these techniques in tradition diagnosis and epidemiological studies has been limited (21).

The number of studies related to the presence of chicken *Eimeria* species in Iraq are limited. These studies have been conducted in few locations and species identification was depended on the oocysts morphology, necropsy and/or histopathological findings. And as a result, nine *Eimeria* species (*E. acervulina*, *E. brunetti*, *E. hagani*, *E. maxima*, *E. mitis*, *E. mivati*, *E. necatrix*, *E. praecox* and *E. tenella*) have been reported to diagnosed in chickens (22, 23).

In this study, we aimed to identify the *Eimeria* species causing coccidiosis in broilers using a molecular technique based on the Quantitative Real-Time PCR and determine the prevalence of coccidial infections in commercial broiler flocks in chickens.

MATERIALS AND METHODS

1- **Stool Sample collection**

From August 2013 to July 2014 a total of 200 samples of fresh fecal droppings and intestines were collected from suspected infected chickens with coccidiosis attending to the veterinary hospital and veterinary clinics were spread in Kerbala and Babylon provinces, Iraq for the examination and treatment.

The oocysts were isolated from intestines and stool of infected chickens and collected in Eppendorf tubes and stored in freezing until used in DNA extraction (12).

2- **Direct examination method (microscopic examination):**

The first step in the present study is identified the positive samples from whole samples that collected from suspected chickens with coccidiosis and examined microscopically to determined the oocysts either by direct methods in cases of acute diarrhea in which the samples examined either freshly or used of a natural formalin buffer solution which concentrated 10% or by staining the samples with Iodin or Giemsa stain to made the internal components more clear.

3- **Stool DNA Extraction**

Genomic DNA was extracted from stool samples of chicken by using AccuPrep® Stool DNA Extraction Kit (Bioneer, Korea)

4- **DNA profile**

For detection of DNA that extract from stool samples through the use of a Nanodrop spectrophotometer (THERMO, USA) for detection and measurement the concentration of nuclear acids (DNA and RNA), Where is detected DNA concentration (ng / µl) and measuring the purity of the DNA by reading the absorbance at a wavelength of between (280-260 nm) (21).

5- **qRT-PCR protocols**

Real-Time PCR was preformed for detection of poultry *Eimeria* species by using the primers and TaqMan probe specific for ITS1 region In the DNA that code for Ribosomal RNA, technique was carried out according to method described by(13).

Real-Time PCR master mix preparation

Real-Time PCR master mix was prepared by one step Reverse Transcription and Real-Time PCR detection kit (AccuPower RocketScript RT-qPCR PreMix, Bioneer, Korea), and done according to company instructions as following Table (1):

| Table 1: Explained the main components of the mix for qRT-PCR technique. |
|----------------------------------|-----------------|
| **qRT-PCR Master mix** | **Volume** |
| 2X Green star master mix | 25 µL |
| DNA template | 5µL |
| ITS1 forward primer | 1µL |
| ITS1 reverse primer | 1µL |
| DEPC water | 18µL |
| Total | 50µL |
Primers:
The primers were designed in this study by using the complete sequence of ITS1 region in the rDNA using NCBI Gene-Bank and Primer3 plus online and provided by (Bioneer company, Korea) as showed in Table (2):

<table>
<thead>
<tr>
<th>Real-Time Primer</th>
<th>Sequence</th>
<th>PCR SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.tenella F</td>
<td>TTGTTCCGTGTTGTGT-GCTCTG</td>
<td>81bp</td>
</tr>
<tr>
<td>R</td>
<td>AGTTCCAAGCAGCAT-GTAACGG</td>
<td></td>
</tr>
<tr>
<td>E.maxima F</td>
<td>TCCCAAAGCG-GTTTCATCATCC</td>
<td>72bp</td>
</tr>
<tr>
<td>R</td>
<td>ACAGTCCCACAAT-GCAAGAAG</td>
<td></td>
</tr>
<tr>
<td>E.necatrix F</td>
<td>ATTTGCTTTGCGAG-GCATGTG</td>
<td>96bp</td>
</tr>
<tr>
<td>R</td>
<td>ACAAGCCCCCACACAT-GCAAG</td>
<td></td>
</tr>
</tbody>
</table>

The qRT-PCR master mix reaction components that mentioned in (table 2) were added into standard qPCR tube containing (8 wells strips tubes which containing Rocket Script reverse transcriptase and TaqMan probe premix). Then all strips tubes vortexing for mixed the components and centrifuge for 3000 rpm for 3 minutes in Exispin centrifuge, after that transferred into Exicycler Real-Time PCR thermocycler.

6-Real-Time PCR Thermocycler conditions
Real-Time PCR thermocycler conditions was set up according to primer annealing temperature and RT-qPCR TaqMan kit instructions as following Table (3):

Table 4: The percentage of the three species of Eimeria diagnosed by Molecular assay in Karbala and Babylon provinces:

<table>
<thead>
<tr>
<th>Species</th>
<th>Positive samples</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.tenella</td>
<td>107</td>
<td>66.8%</td>
</tr>
<tr>
<td>E.necatrix</td>
<td>48</td>
<td>30%</td>
</tr>
<tr>
<td>E.maxima</td>
<td>5</td>
<td>3.13%</td>
</tr>
<tr>
<td>Total</td>
<td>160</td>
<td></td>
</tr>
</tbody>
</table>

The used of qRT-PCR techniques in the specific detection of Eimeria species showed a fluorescence of SYBER Green dye which appeared very clear through formed of
amplification plot to the positive samples during the cycle 30 as shows in the fig.(2,3 &4).

Figure 2: Amplification Plot of region ITS1 of *E. tenella* species, in which the fluorescence of the dye SYBER Green represent samples positive located above of Threshold while the control samples located below the threshold.

Figure 3: Amplification Plot of region ITS1of *E. necatrix* species, in which the fluorescence of the dye SYBER Green represent samples positive located above of Threshold while the control samples located below the threshold.

Figure 4: Amplification Plot of region ITS1of *E. tenella* species ,in which the fluorescence of the dye SYBER Green represent samples positive located above of Threshold while the control samples located below the threshold.

DISCUSSION

In chickens is clearly central to a better understanding of epidemiology and dynamics of the disease in intensive and extensive chicken establishments. This is particularly important for planning an effective prevention and control program of coccidiosis. Traditionally, diagnosis has been achieved by detecting *Eimeria* oocysts excreted in the feces of chickens by measuring oocyst and sporocyst size or notes of the site and pathological lesions in the intestine of chickens. Although the microscopic examinations can absolutely show the positive fecal samples, but the traditional methods very limited in the specific diagnosis or identification of *Eimeria* species also These methods are unreliable in mix infection when there are a multiple species of *Eimeria* infect a single host and there is Similarity in the size , shape of oocysts and the sites of infection (25).

During recent years, there have been significant advances in the development of molecular-diagnostic tools like the Polymerase chain Reactions(PCR) and the Real-time PCR, to comparison between both of them : the qRT-PCR has several advantages: there is no need to post-amplification analysis, which reduces risks of contamination; the ability to better differentiate between different species of *Eimeria* infections; and numerical results which are much easier to distinguish than the visualization of a stained gel in the conventional PCR(14).

Several studies that used of PCR technique targeting different regions of the *Eimeria* genome,such as the SS rRNA (the small subunit rRNA (12, 13), the sporozoite antigen gene EASZ240/160 (14) and ITS-1 (8, 15,17) and ITS-2 (18-20) genomic regions. Since the ITS regions are less conserved than the rRNA genes, big variations in this region of DNA sequence between the Eimerian species, makes the design of primers straight forward and reduces the risk of cross reactions among different species (6).

The REAL-TIME assay have been shown to be directly comparable in terms of sensitivity and robustness, capable of detecting 10 parasite genomes but not one, unaffected by the presence of DNA derived from the host or the other test species (26).

Every sporulated oocyst contains eight eimerian genomes, suggesting that the DNA equivalent of a single oocyst will be consistently detectable given normal experimental replication (between one and 10 genomes detected per reaction).Mature intracellular stages represent in the order of 10 to 100 eimerian genomes (depending on the species and stage (27). Suggesting that even a fraction of one may be counted (25).

Apart from an accurate identification of *Eimeria* species, molecular methods can also be helpful in epidemiological study of the parasite, an aspect that has been less
investigated to date at yet, there has not been any documentary report related to the specific identification and epidemiological pattern of the pathogenic Eimeria species in the chickens, in Karbala and Babylon provinces. Therefore, the results of the present study are the first study depend on molecular methods to detection the Eimeria species the causal agent of poultry coccidiosis in Karbala and Babylon provinces.

To compared the results of the present study with the results of researchers in various Arab and foreign countries, in which the study which was conducted in Arab Republic of Egypt has been diagnosed prevalence of five species of Eimeria mainly include of E. tenella then E. necatrix, E. acervulina, E. maxima and finally type E. mitis using a technique REAL TIME- PCR (28).

Researcher Muhammad, L. et al held a study on the diagnosis of infection in poultry coccidiosis i in Jordan using technique Quantitative REAL TIME- PCR and identified five species of Eimeria where the species E. tenella comes in front and reached a rate of about 80.5%, while the E. maxima (66%), E. necatrix (45%), E. acervulina (12%) and finally the species E. mitis (3.5%) (29).

Also this technique were used in the Kingdom of Saudi Arabia to diagnosed the infection with coccidiosis in chickens, in which the stool samples collected from six fields scattered across the Kingdom and identified of four species of Eimeria in which the species E. necatrix appeared high percentage then the species E. tenella, E. maxima and E. acervulina (10).

In comparison of the present study with the results of studies in foreign countries, including Australia, where the researcher use the REAL TIME PCR for the detection and diagnosis of seven species of Eimeria which infect chickens and targeted one genetic area which is called the ITS2 located in the ribosomal DNA (rDNA) using Taqman prods found that among the seven species the most prevalent species are the species E. tenella compared with the other six species (30).

As in Japan used the technique SYBR Green-based Real-Time PCR for the diagnosis of five species of Eimeria using Primers sets were designed based on the sequences area ITS1 in Ribosomal DNA specific to each species of the five and the researcher concluded that Melting Curves for each species has one Peak and the values of Melting temperature are specific for each species. The researcher concluded that the species E. brunetti is the most prevalent species after E. maxima then E. necatrix E. tenella and finally the species E. acervulina, so the REAL- TIME PCR technique is not only easy but also fast and efficient in qualitative diagnosis of poultry coccidiosis (31).

It also conducted some studies on the diagnosis of poultry coccidiosis in a manner REAL- TIME PCR in some developing countries such as Ethiopia, held a study on the prevalence of species of Eimeria in Ethiopian villages, by using this technique were reached to diagnosis of seven species of Eimeria where the percentage of species E. praecox was 95% and then species E. maxima (60%) and then species E. mitis (28%) and then come successively species E. tenella, E. necatrix and E. brunetti (32).

Carried out a diagnostic study is the first of its kind in Bangladesh for poultry coccidiosis following the molecular methods such as REAL TIME PCR technique. Where diagnosed seven species of Eimeria the most prevalent are E. tenella then E. necatrix, E. acervulina, E. maxima, E. brunetti, E. mitis and finally the species E. praecox (16).

Efforts towards educating the chicken farmers to control coccidiosis in through good management practices, and the proper use of anticoccidial drugs should be considered. However, to control this economically important parasitic disease of poultry, further studies need to be undertaken to devise sustainable and cost-effective prevention and control methods.

CONCLUSION

The following conclusions were conducted from the present study:

1- Although the routine tests such as clinical examination, macroscopic and microscopic diagnosis important, but it is unable to qualitative diagnosis of Eimeria that cause infection.

2- Using of the molecular methods such as REAL-TIME PCR which characterized by highly accuracy, but these methods expensive economically compared to routine methods.

3- The use of specific primers for diagnosis of ITS1 region are important in molecular detection of Eimeria species that isolated from intestines and feces of suspected chickens infection with Coccidiosis.

4- The E. tenella consider the most prevalent species (66.8%), Then E. necatrix (30%) and finally E. maxima which represented (3.13%).

5- The coccidiosis among chicken farms of Kerbala and Babylon is highly prevalent. E. tenella was the most prevalent species.

ACKNOWLEDGEMENT

Authors acknowledge the immense help received from the scholars whose articles are cited and included in references of this manuscript. The authors are also
grateful to author’s publishers of all those articles, journals and books from where the literature for this article has been reviewed and discussed. Also authors would like to thanks department of biology, college of education for pure sciences, university of Kerbala for their support and encouragement.

Funding and conflicting: There was no source of funding for this work and there was no any conflicting of interest.

REFERENCES

9. Carvalho, FS.; Wenceslau, AA.; Teixeira, M.; Matos, Carneiro JA.; Melo, AD.; Albuquerque, GR. (2011): Diagnosis of Eimeria species using traditional and molecular methods in field studies. Vet Parasitol, 176, 95-100.

18. Lien, YY.; Sheu, SC.; Liu ,HJ.; Chen, SC.; Tsai, MY.; Luo , SC.; Wu, KC.; Liu, SS.; Su, HY. (2007): Cloning and nucleotide sequencing of the second internal transcribed spacer of ribosomal DNA for three species of Eimeria from chickens in Taiwan. Vet. J., 173, 186-191.

30. Morgan ,JA.; Morris, GM.; Wlodek, BM.; Byrnes, R.; Jenner, M.; Constantinoiu, CC., Anderson ,GR.; Lew-Tabor, AE.; Molloy, JB.; Gasser, RB.; Jorgensen, WK.(2009): Real-time polymerase chain reaction (PCR) assays for the specific detection and quantification of seven Eimeria species that cause coccidiosis in chickens. Mol Cell Probes, 23, 83-89.
