Pandemic and Vaccines – The Case of Deadly Anthrax Infection, Vaccine Development and Evolution

Vinay Kumar¹, Syed Mohsin Waheed², Manu Pant²

¹Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India; ²Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun, India.

ABSTRACT

Introduction: Anthrax is a highly infectious, zoonotic disease occurring worldwide in domestic as well as wild herbivores. It is caused by gram-positive, rod-shaped, anaerobic and sporulating bacteria Bacillus anthracis. Humans and other secondary consumers are infected when they come in contact with contaminated animals or animal products and consume anthrax contaminated meat. The symptoms are manifested in the three forms namely cutaneous, gastrointestinal and inhalational, and result in high mortality.

Objective: Timely detection and treatment of anthrax remain a big challenge for scientists and clinicians. The only way to prevent this disease is to vaccinate people living in maximum threat areas. The present study is an attempt to compile available information on conventional anthrax vaccines, vaccines under development, and prospects of developing new anthrax vaccines along with their advantages and disadvantages.

Conclusion: This review gives an insight into the cause and mechanism of anthrax infection, the current status of anthrax vaccines available in the market, vaccines under process and the need and future prospects of anthrax vaccine development. The need of the hour is to put in more concerted efforts towards development, testing and use of the new generation vaccines.

Key Words: Anthrax, Vaccine, Anthrax toxins, Recombinant Vaccine, New generation Vaccine, Bacillus anthracis

INTRODUCTION

Anthrax is a highly infectious, zoonotic disease occurring worldwide in domestic as well as wild herbivores. The causal organism of this disease is anaerobic and spore-forming bacteria known as Bacillus anthracis. Miscellaneous outbreaks of anthrax have occurred from time to time in animals and humans calling for enhanced and concerted efforts towards eradication of this disease, based on the route of infection in humans and other susceptible animals the disease is categorized into three categories.

(i) Cutaneous infection
More than 95% of anthrax cases are cutaneous and occur when the spores come in contact with the injured part of the body, especially skin. People consuming contaminated meat or handling wool, animal hides etc. are more prone to this infection. The incubation period of cutaneous anthrax is about 0.15 to 12 days¹ ² (Fig 1). The primary symptoms are painless lesion at the injection site, nodes swelling, headache, fever and malaise.

(ii) Gastrointestinal infection
This type of anthrax generally occurs after consuming contaminated uncooked meat and the symptoms appear in the form of acute inflammation in the intestinal tract. Gastrointestinal anthrax has 1-7 days of incubation period ⁶. Preliminary signs are fever, nausea, appetite loss, vomiting of blood, abdominal pain, and bloody diarrhoea ⁷(Fig 2). The fatality rate in this case is about 25-60% ¹.

(iii) Inhalational infection
Inhalational anthrax or pulmonary anthrax occurs due to the inspiration of B. anthracis spores. The incubation period is reported from 1 to 43 days ⁹.

Mechanism of Anthrax Pathogenesis
There are two toxic enzymatic effectors proteins involved in the pathogenesis of anthrax which is Lethal Factor (LF)
and Edema Factor (EF). The LF and EF both bind to a third protein Protective Antigen (PA). PA is cleaved by furin like cell surface proteases and bind to the cell surface receptors molecule, Tumor Endothelial marker 8 (TEM8) and Capillary Morphogenesis Gene 2 (CMG2) 10, 31 and forms a ring-shaped heptamer complex. It enters into the host cell through endocytosis by acidification of the endocytic vacuole12. The LF is a zinc metalloprotease which acts as an inhibitor of signal transduction through the mitogen-activated protein kinase (MAPK) cascade by cleaving most MAPK kinases (MAPKKs or MEKs) and preventing the phosphorylation of MAPKs, while EF is a calcium/calmodulin-dependent adenylate cyclase which increases cyclic AMP and leads to edema13 (Fig 314).

Treatment
The only way to treat the deadly anthrax is by vaccination. People living in maximum threat areas have to be vaccinated and prevent the spread of this lethal disease. Described here-with are the available vaccination methods and upcoming vaccination strategies against anthrax.

Livespore based vaccines
Live spore vaccine, also known as the Sterne strain vac-
cine, has proven to be effective in the drastic decline of
the anthrax incidences worldwide 15. These are B. anthra-
cis strains based vaccines and do not produce capsule 16.
In Russia, it was known as Zenkowsky strain or STI-1 while in China it was famous as A16R strain 17, 18. The dis-ad-\nadvantage of live spore vaccine is that it causes necrosis
at injection site leading to it being discontinued in most
countries.

Protective Antigen (PA) Based Vaccines
B. anthracis strain (V770-NP1-R) in the USA was used as
oxygenic, non-capssulated and non-proteolytic agent for the
treatment of anthrax. Its culture supernatant was used for im-
munization. Its culture supernatant was adsorbed in aluminum
hydroxide and was known as Anthrax vaccine adsorb or
AVA and was registered as BioThrax® 19, 20. An improved
version of the same is now available 21. The advantages of
this vaccine are long term immunity by providing multiple
booster doses after 12 and 18 months (>5 years). Another
PA-based vaccine, alum precipitated culture filtrate of the
Sterne strain 34F2 is available in the UK which is registered
as Anthrax Vaccine Precipitated (AVP) 20. It generated anti-
bodies against PA, which have anthrax toxins neutralization
activity and provide immunity against anthrax. 22-26. Though
AVA and AVP are advantageous over live spore vaccines,
their widespread use is hindered by the fact that they take
long time to generate protective immunity that effects post-
exposure anthrax prophylaxis. Besides, it is suitable for a
limited animal model for potency testing 27, 24.

Consequently, the call of the hour was to bring about an im-
provement in the existing vaccination strategies along with
additional immunogens, expansion of novel adjuvants, novel
delivery methods and agents for a safer and more conveni-
ent/ effective new generation anthrax vaccine. The new gen-
eration anthrax vaccines which are at different stages of de-
velopment are described below.

Live bacterial vaccines
Many live bacterial vaccines are under process like spor-
genic Bacillus subtilis transformants 28, Attenuated B. an-
thracis strains expressing rPA 29,30 or mutant PA or LF 31,
psoralen-killed but metabolically active (KBMA) B. an-
thracis Sterne vaccines 32, aromatic amino acid-deficient B.
anthracis Sterne mutants 33 and many other live attenuated
strains of bacteria modified through recombinant DNA tech-
nology to express PA in vivo (e.g., Salmonella, Lactobacil-
lus) and evaluated for their potency as oral vaccine 34. The
oral vaccines based on Salmonella 35, 36 and Lactobacillus 37,
38 have potential advantages in providing protection in ani-
mal models against spore challenge. However, culturing and
storage requirements of this vaccine offer a serious limita-
tion to its usage 34.

Recombinant PA based vaccines
PA has been well established as the key component of an-
thrax vaccine 39, 40, 41. Protective antigen (PA) is the non
toxic component of the B. anthracis, due to this non toxic
property it could be an ideal candidate for anthrax vaccine.
The single-dose of PA-based anthrax vaccine could elicit
an effective immunity, safe and efficacious against B. an-
thracis. New generation vaccines propose the development of
recombinant PA vaccines for anthrax treatment 42. The
expression system which is based on Escherichia coli for
preparation of recombinant PA (rPA) served as the receptor
for enzymatic moieties of anthrax toxins (ATs) and elicited
toxin neutralizing antibodies (tested in white rabbits and
rhesus macaques against an aerosol containing Bacillus an-
thracis spores (IVRI strain, tox+ cap+). In other hosts, the
similar expression of RPA gene has been also evaluated like
the attenuated strain of B. anthracis, Saccharomyces cere-
visiae, Baculovirus, Vaccinia virus and tested for providing
protection against B. anthracis 43, 44. Further, many rPA pro-
teins purified from B. anthracis 45, 46 and E. coli combined
with aluminium-based adjuvants are under clinical trial as
next-generation anthrax vaccine. Besides these, numerous
antigen-based delivery methods like microspheres 47, na-
noemulsions 48, nanofibres 49, nanoparticles 50, 51 and liposo-
mal and others with variable success have been applied to
improve the immunogenicity. The PA-based liposomal for-
mulation has been reported to induce high titers of Lethal
Toxin (LeTx), neutralizing antibodies and confer complete
protection against challenge 52.
However, this system of vaccination exhibits variability in the extent of the immune response in different experimental model organisms. Overall the advancement in PA-based vaccines (i.e., recombinant, purified, modified), failed in providing complete protection as like AVA and other conventional vaccines.

Capsule vaccines

The capsule vaccines are polysaccharides which provide protection against bacterium phagocytosis by generating humoral immune response. B. anthracis poly-gamma-d-glutamic acid (γDPGA) capsule covalently conjugated with membrane protein of Neisseria meningitidis serotype B and was reported to protect mice against parenteral anthrax challenge. The γDPGA capsule based vaccine significantly protects monkeys, but not rabbits, against aerosolized B. anthracis spore challenge. However, it has been observed by ELISA and a macrophage opsono-adherence assay that the γDPGA capsule-based vaccine induced robust anti-capsule antibody responses in both species. In another study, the complete protection against cutaneous anthrax were observed when γDPGA peptidoglycan preparation (GluPG) is conjugated with PA. Developed sortase-conjugation method (linking the γDPGA capsule to the receptor binding domain (D4) of PA) for improving the earlier used random chemical cross-linking. The construct elicited robust antibody response against both the antigens and conferred complete protection against wild-type or pagA mutant B. anthracis Ames strain in guinea pigs developed a dual vaccine by conjugating the γDPGA capsule with PA, which elicited antibodies against both the bacilli and toxin component. The native PA was replaced with dominant -negative inhibitory PA mutant. This resulted in improved immunogenic response. In another study, intranasal immunization of mice with PA and PGA-BSA protein conjugate exhibited an immune response against both PA and PGA. The anti-PA antibodies have the capability to neutralize the LeTx while anti-PA antibodies can kill PGA-producing bacteria by complement activation. It is also anticipated that the addition of the capsule can further improve PA-based vaccines. Experiment

Epitope vaccines

The epitope is the part of an antigen molecule to which an antibody is attached- also known as the antigenic determinant. Multiple antigenic peptides (MAPs) displaying aa 304–319 or 305–319 from domain 2 of PA (loop domain) have been shown to elicit antibodies specific to a linear determinant in PA and mediated high-titer neutralization of LeTx in vitro. Besides, immunogenicity and protective efficacy of MAP in conjunction with a heterologous T-cell epitope from Plasmodium falciparum was investigated in rabbits. It was reported to elicit toxin neutralizing antibodies and provide protection from aerosolized spores of B. anthracis Ames strain. In another development it was demonstrated that strong immunogenicity of ID-II epitope (aa 626–676 of PA) showing protection with whole PA. Many AT neutralization-associated humoral epitopes have been identified using solid-phase epitope mapping and confirmatory assays. The studies have established the feasibility of the use of epitopes for anthrax prophylaxis making them a prospective candidate for effective vaccination.

Subunit vaccines

Evaluation of PA domain for subunit vaccines is also being envisioned as the next generation vaccines after a better understanding of molecular pathogenesis, immune mechanisms and structure of PA has been developed over the past several years. In a study, it was found that the conjugation of LF and EF in engineered strains expressing PA and EF/LF which resulted in keen antibody response and offered more protection as compared to the strains expressing only PA. Further developments in this direction resulted in the preparation of antibodies which are directed against anthrax PA domain 4 (PA-D4) which protects mice from B. anthracis infection. It was concluded that addition of other B. anthracis proteins or protein domains can improve the efficacy of PA-D4 based vaccine. In another study, it has been found that fusion products of PA, LF and EF on bacteriophage T4 capsid demonstrated a strong antigen-specific response and LeTx neutralizing antibodies as compared to the phage displaying PA alone. Yet another study states that immunization with a hybrid molecule composed of the key domains of PA and LF elicited PA and LF specific antibodies with LeTx neutralizing antibodies and protected rabbits against B. anthracis. This led to the conclusion that the fusion conferred robust protection against anthrax infection as compared to PA alone.

Plant vaccines (Oral Vaccine)

The vaccines which are based on the plant are environmental and eco-friendly, easy to use, economical, devoid of any animal or pathogens and least challenging for manufacture/ process development. More importantly, they provide both humoral and cell-mediated immune response along with providing long-lasting immunity. Several researchers have already reported the expression of PA in transgenic chloroplast. The expressed PA in transgenic chloroplast has antibodies neutralization ability which reduces the cost of protein expression. In a study it was found that more than 360 million doses of PA-based anthrax vaccine yielded in one-acre transgenic tobacco plantation. Expression of rPA in tomato was shown to be stable at higher temperature with no requirements of cold storage, transportation issues and PA purification. The transgenic chloroplast containing expressed PA-D4 has 5.3% of total soluble protein, which has the ability to protect the mice against B. anthracis spores.
after oral immunization. In another study, a subunit vaccine comprising PA-D4 and domain 1 of LF as fusions to lichenase (LicKM – a thermostable enzyme from Clostridium thermocellum), expressed in Nicotiana benthamiana – was shown to generate LeTx neutralizing antibodies. Consequently, edible vaccines can be looked up as an alternate source of anthrax vaccine with additional benefits of being economical and suitable for mass immunization.

DNA vaccines

DNA vaccines are expected to be advantageous because it is easy for construction, and offers the scope of combining different antigens, lowering the cost of production by eliminating the need for protein expression and antigen purification. A cationic lipid-based bivalent DNA vaccine encoding genetically detoxified PA and LF proteins was tested against B. anthracis spores. The mice models have shown promise in nonhuman primates and passed the clinical trial evaluating immunogenicity and safety parameters. The evidence of immunogenicity and type of immune response generated by DNA vaccines can be further modified and enhanced by targeting the antigen to different cellular location.

Virus & virus-like particle vaccines

Virus-like particles (VLPs) are multi-protein structures which mimic the organization and conformation of native viruses but lack the viral genome. There are many live viral vaccines produced which have best protection capacity against anthrax spores like adenovirus-based, Venezuelan equine encephalitis virus-vectored vaccines, Parvovirus B19 has been used for the expression of VLP conjugated PA-D4 which have robust neutralizing anti-PA antibody. The Flock House virus have high affinity PA-binding domain at Anthrax toxin cell receptor which shows multiple copied of affinity. A group of researcher have identified that the chimeric VLP inhibit the toxicity of lethal toxin while binding with PA. Therefore, the non-infectious VLPs are considered as an effective method for neutralizing the anthrax toxins at cell surface receptors. However, only a little work has been done in this direction calling for more research inputs.

Nanotechnology based vaccines

Nanotechnology marks a new era in the field of medicines and having a wide range of applications in treatments, drug delivery, tissue engineering and diagnostics. Recently, the nano-particle delivery based micro-encapsulated in poly (lactide co- glycolide) (PLGA) forms of PA and Domain 4 were developed but their efficacy remains to be proven. For this reason, a new suitable alternative of next-generation anthrax vaccine is necessary. Nano-particle based approach using silver or gold nanoparticles as nano-conjugates of PA and PA-D4 seems to be a new possibility with numerous unexplored potentials.

Table 1 summarizes the different types of vaccines used for anthrax treatment.

CONCLUSION

Anthrax treatment has been a challenge to the clinicians across the globe resulting in constant efforts towards the development of efficient vaccination for the disease. While conventional vaccines are still being used, the requirement of multiple booster doses has accounted for high cost and shortage of conventional vaccines for all. It has, therefore, become imperative not only to identify alternative immunogens for immunization against anthrax toxins but also look out for alternative vaccination strategies. Several types of research have shown potential candidature in next-generation vaccines which may have single shot requirements, are cost-effective, eco-friendly, easy to handle and efficacious. The need of the hour is to put in more concerted efforts towards development, testing and use of these new generation vaccines.

ACKNOWLEDGEMENT

The authors would like to acknowledge Graphic Era (Deemed to be University), for providing all necessary support in completing the study. The authors also express their sincere thanks to the authors/editors / publishers of all those articles that helped us in collecting and compiling essential information for the preparation of this manuscript.

Conflict of Interest: The authors declare that they have no conflicts of interest for this study.

Source of Funding: Nil

REFERENCES

Kumar et al.: Pandemic and vaccines – the case of deadly anthrax infection, vaccine development and evolution

Kumar et al.: Pandemic and vaccines – the case of deadly anthrax infection, vaccine development and evolution

Table 1: Advantages and Limitations of available Anthrax vaccines

<table>
<thead>
<tr>
<th>S.N.</th>
<th>Vaccine</th>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Livespore based vaccines</td>
<td>No capsule formation.</td>
<td>Necrosis at injection site.</td>
</tr>
<tr>
<td>2</td>
<td>Protective Antigen (PA) Based Vaccines</td>
<td>Long term immunity.</td>
<td>Requires multiple booster doses.</td>
</tr>
<tr>
<td>3</td>
<td>Live bacterial vaccines</td>
<td>Protection in animal models against spore challenge.</td>
<td>Requirement of specific culturing and storage conditions</td>
</tr>
<tr>
<td>4</td>
<td>Recombinant PA based vaccines</td>
<td>Provides high titers of Lethal Toxin (LeTx), neutralizing antibodies.</td>
<td>Not better than conventional vaccines</td>
</tr>
<tr>
<td>5</td>
<td>Capsule vaccines</td>
<td>Significant protection to monkeys by γDPGA capsule based vaccine.</td>
<td>Failure in protecting rabbits against infection</td>
</tr>
<tr>
<td>6</td>
<td>Epitope vaccines</td>
<td>Protection from aerosolized B. anthracis spores, toxin neutralization.</td>
<td>Restricted to Ames strain, not yet proven against other B. anthracis strains</td>
</tr>
<tr>
<td>7</td>
<td>Subunit vaccines</td>
<td>Strong antigenic response with fusion products of PA, LF and EF</td>
<td>No antigenic response against PA alone.</td>
</tr>
<tr>
<td>8</td>
<td>Plant vaccines (Oral Vaccine)</td>
<td>Eco-friendly, easy to use, economical, devoid of pathogens, ease of manufacture /process development</td>
<td>Varied response, stability issues.</td>
</tr>
<tr>
<td>9</td>
<td>DNA vaccines</td>
<td>Ease of construction, scope of antigen combinations, combining different antigens, no need of protein expression and antigen purification, cost effective</td>
<td>Failure in antigen targeting to different cellular locations.</td>
</tr>
<tr>
<td>10</td>
<td>Virus & virus-like particle vaccines</td>
<td>Effective for neutralizing the anthrax toxins at cell surface receptors</td>
<td>Limited work done, needs further validation.</td>
</tr>
<tr>
<td>11</td>
<td>Nano technology based vaccines</td>
<td>Environmental friendly, cost effective.</td>
<td>Efficacy yet to be validated</td>
</tr>
</tbody>
</table>
Kumar et al.: Pandemic and vaccines – the case of deadly anthrax infection, vaccine development and evolution

Figure 1: Cutaneous Infection.

Figure 2: Gastrointestinal Infection.

Figure 3: Mechanism of Anthrax infection.