

141 International Journal of Current Research and Review www.ijcrr.com

 Vol. 04 issue 15 Aug 2012

 ijcrr

 Vol 04 issue 15

Category: Research

Received on:17/06/12

Revised on:02/07/12

Accepted on:13/07/12

ABSTRACT
We propose a prototype framework, called web service Application Fabric (WSAF) that is used for

developing WSDL-centric approach to Java web Services. To encourage good design and make

programming easier is to use an application framework. Framework offers a layer of abstraction on

top of complex tools. A good SOA framework should encourage use of XML schema libraries and

reuse schema across WSDL documents. A web service is a programmatic interface for application-to-

application communication that is invoked by sending and receiving XML. ―WSDL-centric‖ means

creating a web service by building its WSDL and using that WSDL document with references to the

Java elements that implement it. Instead of using standard WSDL format we are generating web

service interface using our own style. These generated files are easy to process. We found that WSAF

performance is better than Apache Axis 2 and JAX-WS. WSAF is an open-source web Services

application fabric supporting HTTP protocols such as REST, SOAP, XML, and JSON. From the

description written in simple XML, WSAF generates the Client APP (.jar), the Java server code

template (.war), the WSDL and the documentation of the description in HTML. We compared

performance of WSAF with Axis 2 and JAX-WS frameworks.

Keywords: SOA, web services, WSAF, WSDL, XML

__

INTRODUCTION

A web service is a platform neutral, language

neutral and can accessed across the network. A

web service has one or more ports. Each port is

a binding deployed at a certain network address

(endpoint). While most descriptions of web

based solutions emphasize their distributed

characteristics, their decentralized nature – they

have distinct management and control

environments and communicate across trust

domains – has much more impact on

architecture of this framework and the

requirements of the underlying protocols. So,

we focus our framework first on supporting

application-to-application integration between

enterprises having disjoint management,

infrastructure and trust domains. The focus of

this paper and the framework it defines is a

model for describing, discovering and

exchanging information that is independent of

application implementations and the platforms

on which applications are developed and

deployed. Every web Services platform, like

Apache Axis [1], Xfire, JBOSS, JAX-WS [5],

Spring or something else, has to provide three

core subsystems:

 Invocation

 Serialization

 Deployment

EFFECTIVE WAY TO DEVELOP WEB SERVICES

Girish Tere
1
, R. R. Mudholkar

2
, Bharat Jadhav

3

1
Department of Computer Science, Shivaji University, Kolhapur

2
Department of Electronics, Shivaji University, Kolhapur

3
Department of Electronics and Computer Science, Y.C. Institute of Science, Satara

E-mail of Corresponding Author: girish.tere@gmail.com

142 International Journal of Current Research and Review www.ijcrr.com

 Vol. 04 issue 15 Aug 2012

WEB SERVICE APPLICATION FABRIC

Java is a powerful development platform for

service-Oriented Architecture (SOA) [20, 24].

Because robust web Services technology is the

foundation for implementing SOA, Java now

provides the tools modern enterprises require

integrating their Java applications into SOA

infrastructures. JWS has weaknesses,

particularly when it comes to the development

approach known as ―Start from WSDL and

Java‖ [27]. The JWS [5, 10] standards present a

Java-centric approach to web Services. This

approach is difficult when we need to work

with established SOA standards and map Java

application to existing XML Schema

documents and WSDLs. One way to encourage

good design and make programming easier is to

use an application framework. For example, the

Apache Struts framework encourages web

applications development based on the Model

View Controller (MVC) framework.

Frameworks [6, 7] offer a layer of abstraction

on top of complex toolsets. The layer of

abstraction encourages you to program in a

certain way. By restricting your programming

choices to a subset of proven patterns, the

framework makes your job easier and less

confusing. Application frameworks can also

encourage good design. A good SOA

framework, therefore, should encourage the use

of XML Schema libraries and promote the

reuse of schema across WSDL documents. A

good SOA framework should separate compiled

schemas and WSDL from the rest of the

application classes [25]. A common framework

identifies specific functions that need to be

addressed in order to achieve decentralized

interoperability. It does not determine the

particular technologies used to fulfill the

functions but rather divides the problem space

into sub-problems with specified relationships.

This functional decomposition allows differing

solutions to sub-problems without overlaps,

conflicts or omitted functionality. This is not to

say that all applications must offer the same

facilities, rather that when a feature is offered it

should fit into a common framework and

preferably have a standard expression. A web

application framework is a type of framework,

or foundation, specifically designed to

help developers build web applications. These

frameworks typically provide core functionality

common to most web applications, such as user

session management, data persistence, and

templating systems. By using an appropriate

framework, a developer can often save a

significant amount of time building a web site.

IMPLEMENTATION OF WSAF

WSAF is a web service application fabric.

WSAF is designed to be able to create web

applications based on defined specifications.

WSAF is based on a simple way to send

requests (using URLs) and handle result

(Simple XML format). It generates a set of

HTML pages from the specification and some

forms to test the application. WSAF generates

Java code to invoke the web application and to

develop it. It also generates WSDL, unit tests

and stubs. WSAF detects if the parameters are

conform to the specification. WSAF includes

concepts like load balancing, fail over, logging,

security, properties and statistics. WSAF

accepts protocols: REST, SOAP [4], XML-

RPC, JSON [8], JSON-RPC, and Front-end

Framework. Designing specification of WSAF

is shown in Fig. 1. web services are the most

important ingredients in any cloud computing

application. A cloud based application can be

fabricated using efficient web services.

Therefore, there is a need of efficient technique

to design and develop good web services to suit

the requirements of cloud paradigm.

http://docforge.com/wiki/Framework
http://docforge.com/wiki/Developer
http://docforge.com/wiki/Web_application

143 International Journal of Current Research and Review www.ijcrr.com

 Vol. 04 issue 15 Aug 2012

Fig. 1. Designing descriptions of WSAF

Runtime descriptions are shown in Fig. 2. All

web applications take individual HTTP requests

and build appropriate responses. This can be

handled in a variety of ways, somewhat

dependent on the server platform. The most

popular overall design pattern of web

application frameworks is Model-View-

Controller (MVC).

Fig. 2. Runtime description of WSAF

The initial code of the framework [13, 16], or

the platform itself, valuates the URL and passes

responsibility to the appropriate

application controller. The controller then

performs any necessary actions with the

application's model and then lets the view build

the actual response content.

DEVELOPING APPLICATION (APP) USING

WSAF

We demonstrate here the development

procedure of Factorial web service. This web

service returns the factorial of a given integer.

Following steps need to be followed for

developing this web service:

Write definitions

An application (APP) is always part of one

project. An APP can contain many functions

(operations). Every function is again part of one

APP. We created a directory named MyApps as

a working directory. This directory contains all

files for the project. In this directory, we created

a file named wsaf-project.xml

<?xml version="1.0"?>

<!DOCTYPE project PUBLIC "-//WSAF//DTD

WSAF Project 2.3//EN"

"http://wsaf.org/dtd/wsaf-project.dtd">

<project name="MyApps" domain="com.sws">

<api name="factapp">

<impl />

<environments />

</api>

</project>

Next we created APP ―factapp‖ in the

application. Since an APP should contain at

least one function, user will be requested to

provide the name and description of a first

function.

As a sample, we are presenting herewith

contents of a function CalculateFactorial.

<?xml version="1.0" encoding="UTF-8"?>

<function name="CalculateFactorial">

<description>calculates and return

factorial...</description>

144 International Journal of Current Research and Review www.ijcrr.com

 Vol. 04 issue 15 Aug 2012

<input>

 <param name="number"

 required="true" type="_int16">

 <description>Input example

 </description>

 </param>

</input>

<output>

 <param name="outputInt64"

 required="true" type="_int64">

 <description>output parameter...

 </description>

 </param>

</output>

</function>

The input parameter name is "number" and the

output parameter name is "outputInt64".

Generation of various codes

With this definition our system will generate

HTML documentation with test forms; server-

side code, with Javadoc documentation; client-

side code, with Javadoc documentation; an

empty-shell web application in the form of a

WAR file. Various screen shots of the

generated codes in browser are shown in Fig. 3,

4, 5 for factapp API. Example shows the

successful calculation of 5!

 Fig. 3. APP overview

 Fig. 4. Screen shot of Function

CalculateFactorial

 Fig. 5. Output of web service

In same way we developed Fibonacci web

services and String services. Fibonacci web

service returns i
th
 element in Fibonacci series

(1, 1, 2, 3, 5, 8, 13, ...) String services can be

used for performing various operations on

string like reverse, changing case,

concatenation of two strings. These 3 web

services (Factorial, Fibonacci and string) are

implemented in WSAF, Axis 2 [1] and JAX-

WS [10].

EXPERIMENTS PERFORMED

Testing

We tested and compared performance of our

framework, WSAF, with some other

frameworks like Axis 2 [1] and JAX-WS [10].

Following software was used:

 WSAF

 Axis 2

145 International Journal of Current Research and Review www.ijcrr.com

 Vol. 04 issue 15 Aug 2012

 NetBeans 6.8 with Glasfish V2+Java

EE+JAX-WS 2

Environment for test:

 Windows XP Professional on both

server as well as on client

 JDK 1.6.0

 Dell Inspiron with Intel Core 2 Duo

CPU @ 2.00 GHz and 4 GB RAM

(Used for publishing web services)

 One Compaq Laptop Presario C700

with Intel Core 2 Duo CPU @ 2.00

GHz and 2 GB RAM (Used as a client)

 These two computer connected using

cross over cable

 Software started: NetBeans 6.8, Ant

Commander, WSAF and Google

Chrome browser.

We used WSDL files generated by 3

frameworks.

Results obtained

We measured Round Trip Time (RTT) in msec

of different web services using following Java

code fragment:

long start = System.currentTimeMillis();

<...call to web server ...>

...after receiving response from server...

System.out.println("Time taken: "+

System.currentTimeMillis() - start)) + "ms");

We run the web services five times and

calculated the average value. These values are

shown in Table 1 and graphically plotted in Fig.

6.

Table 1. Comparison of different

Application Frameworks

Round Trip Time of different

web services in msec (Average of

5 runs)

web service WSAF Axis 2 JAX-WS

Factorial 22 32 38

Fibonacci 32 44 54

String library

(to uppercase)
18 19 27

Fig. 6 Round Trip Time for different

frameworks

Every web service can be used by its WSDL

(web service definition language). WSDL is a

service contract between producer and

consumer of the service. The WSDL document

is useful for both creating and executing clients

against a web service. We have tested the

deployed factorial web service in a Google

Chrome browser. Automatically generated

WSDL document is shown below.

http://localhost:8080/factapp/?_function=_W

SDL

<definitions xmlns:xsd="http://www.w3.org/20

01/XMLSchema" xmlns:tns="urn:factapp" xml

ns:http="http://schemas.xmlsoap.org/wsdl/http/

"xmlns:soap="http://schemas.xmlsoap.org/wsdl

/soap/" xmlns:soapbind="http://schemas.xmlsoa

p.org/wsdl/soap/" xmlns="http://schemas.xmlso

ap.org/wsdl/" name="factapp"targetNamespace

="urn:factapp">

<!--

WSDL generated by WSAF 3, on 2012.06.04

18:58:08.406. -->

<types>

<xsd:schema targetNamespace="urn:factapp">

<xsd:element name="CalcFactRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="number" type="xsd:short"

 minOccurs="1">

<xsd:annotation>

<xsd:documentation>Input

example</xsd:documentation>

</xsd:annotation>

</xsd:element>

146 International Journal of Current Research and Review www.ijcrr.com

 Vol. 04 issue 15 Aug 2012

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="CalcFactResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="outputInt64" type="xsd:lo

ng" minOccurs="1">

<xsd:annotation>

<xsd:documentation>output parameter

...</xsd:documentation>

</xsd:annotation>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

</types>

<message name="CalcFactInput">

<part name="parameters" element="tns:CalcFa

ctRequest"/>

</message>

<message name="CalcFactOutput">

<part name="parameters" element="tns:CalcFa

ctResponse"/>

</message>

<portType name="factappPortType">

<operation name="CalcFact">

<documentation>Calculates

factorial</documentation>

<input name="CalcFactInput" message="tns:Ca

lcFactInput"/>

<output name="CalcFactOutput" message="tns:

CalcFactOutput"/>

</operation>

</portType>

<binding name="factappSOAPBinding" type="

tns:factappPortType">

<documentation>Calculates and returns

fact....</documentation>

<soapbind:binding style="document" transport=

"http://schemas.xmlsoap.org/soap/http"/>

<operation name="CalcFact">

<documentation>Calculates

factorial</documentation>

<soapbind:operation soapAction=""/>

<input name="CalcFactInput">

<soapbind:body use="literal"/>

</input>

<output name="CalcFactOutput">

<soapbind:body use="literal"/>

</output>

</operation>

</binding>

<service name="factappService">

<port name="factappPort" binding="tns:factapp

SOAPBinding">

<soapbind:address location="http://127.0.0.1:80

80/factapp/?_convention=_wsaf-soap"/>

</port>

</service>

</definitions>

The generated .war file can be copied in \webapps directory in Tomcat installation to deploy the web

service. Fig. 7 shows the web service returining the answer of 5! Using Tomat.

Fig. 7. Output of web service returning 5! using Tomcat

147 International Journal of Current Research and Review www.ijcrr.com

 Vol. 04 issue 15 Aug 2012

Analysis of Result

We observed that for all developed and tested

web services, web services developed with

WSAF requires less time as compared with

developed by other two frameworks viz. Axis 2

and JAX-WS. Latency time in case of WSAF is

decreased by at least 20% - 30%. WSAF is

giving better result because we used SAX XML

parser and SOAP document-literal encoding

was used.

CONCLUSIONS

To encourage good design and make

programming easier one can use an application

framework. Framework offers a layer of

abstraction on top of complex tools. A good

SOA framework should encourage use of XML

schema libraries and reuse schema across

WSDL documents. We developed a web

service Application Framework, WSAF, which

is an open-source web Services framework

supporting HTTP protocols such as REST,

SOAP, XML, JSON, JSON-RPC and more.

From the specifications written in simple XML,

WSAF generates the Client API (.jar), the Java

server code template (.war), the WSDL and the

documentation of the specification in HTML.

We found that for tested WSDLs performance

of our framework is better than Apache CFX

and JAX-WS framework. The performance

depends more on the hardware, the network,

Internet connectivity, the Servlet container

where web services are published.

ACKNOWLEDGMENT

Authors wish to thank staff members of

Department of Computer Science, Shivaji

University for providing all necessary

infrastructure as well as we express our

gratitude towards Principal, Thakur College of

Science and Commerce, Mumbai for her kind

support and her excellent library facility.

REFERENCES

1. Apache Axis 2.x., http://ws.apache.org/axis2

2. Apache CXF, http://cxf.apache.org/ , Accessed

on 10th Feb 2012

3. Auletta, V.; Blundo, C.; De Cristofaro, E.;

Raimato, G.; , "A Lightweight Framework

forWeb Services Invocation over

Bluetooth," web Services, 2006. ICWS '06.

International Conference on , vol., no.,

pp.331-338, 18-22 Sept. 2006

4. Ben Shil, A.; Ben Ahmed, M.; Additional

Functionalities to SOAP, WSDL and UDDI

for a Better web Services' Administration,

2nd International Conference on Information

and Communication Technologies, 2006.

ICTTA '06. Volume : 1, pp: 572 - 577

5. Bobby Bissett, Building JAX-WS 2.0 Services

with NetBeans 5.0 and GlassFish, http://jax-

ws.java.net/articles/jaxws-

netbeans/glassfish.html, Accessed on 10th

Feb 2012

6. Cao Hong-Hua; Ying Shi; Cui Hua; Xiao Yang;

, "Towards a Framework for Designing,

Deploying and Executing Semantic web

service-Based Process," Wireless

Communications, Networking and Mobile

Computing, 2008. WiCOM '08. 4th

International Conference on , vol., no., pp.1-

4, 12-14 Oct. 2008

7. Chaoying Ma; Bacon, L.; Petridis, M.; Windall,

G.; , "Towards the Design of a Portal

Framework for web Services

Integration," Telecommunications, 2006.

AICT-ICIW '06. International Conference on

Internet and web Applications and

Services/Advanced International Conference

on , vol., no., pp. 163, 19-25 Feb. 2006

8. Crockford D. ―The application/json Media Type

for JavaScript Object Notation (JSON).‖ The

Internet Engineering Task Force (Network

Working Group) RFC-4627, July 2006,

http://tools.ietf.org/html/rfc4627

9. Davanum Srinivas, Paul Fremantle, Amila

Suriarachchi, and Deepal Jayasinghe, web

Services are Not Slow, Published on WSO2

Oxygen Tank, 2007,

http://wso2.org/print/588, Accessed on 15th

Feb 2012

http://cxf.apache.org/
mailto:bobby.bissett@sun.com
http://jax-ws.java.net/articles/jaxws-netbeans/glassfish.html
http://jax-ws.java.net/articles/jaxws-netbeans/glassfish.html
http://jax-ws.java.net/articles/jaxws-netbeans/glassfish.html
http://wso2.org/print/588

148 International Journal of Current Research and Review www.ijcrr.com

 Vol. 04 issue 15 Aug 2012

10. Eckstein, and Robert Rajiv Mordani.

―Introducing JAX-WS 2.0 with the Java SE 6

Platform, Part 2,‖ November

2006.http://java.sun.com/developer/technical

Articles/J2SE/jax_ws_2_pt2/Monson-Haefel,

Richard. J2EE web Services. Addison-

Wesley Professional, ISBN 0130655678,

October 2003.

11. Gomez-Perez, A.; Gonzalez-Cabero, R.;

Lama, M.; , "ODE SWS: a framework for

designing and composing semantic web

services," Intelligent Systems, IEEE , vol.19,

no.4, pp. 24- 31, Jul-Aug 2004

12. Haidar, A. N.; Abdallah, A. E.; Abstractions

of web Services, 14th IEEE International

Conference on Engineering of Complex

Computer Systems, 2009, pp: 182 - 191

13. Jen-Yao Chung; An industry view on service-

oriented architecture and web services, IEEE

International Workshop on service-Oriented

System Engineering, 2005. SOSE 2005.

pp:59

14. Kawahara, Y.; Kawanishi, N.; Ozawa, M.;

Morikawa, H.; Asami, T.; , "Designing a

Framework for Scalable Coordination of

Wireless Sensor Networks, Context

Information and web Services," Distributed

Computing Systems Workshops, 2007.

ICDCSW '07. 27th International Conference

on , vol., no., pp.44, 22-29 June 2007

15. Kohsuke Kawaguchi, JAX-WS RI 2.1

benchmark details,

http://weblogs.java.net/blog/kohsuke/archive/

2007/02/jaxws_ri_21_ben.html, Accessed on

10th Feb 2012

16. Kumar, A.; "Distributed system development

using web service and Enterprise Java

Beans," Services Computing, 2005 IEEE

International Conference on , vol.2, no., pp.

xiii vol.2, 11-15 July 2005

17. Li Zhang; , "Requirement engineering for

web applications," web Site Evolution, 2008.

WSE 2008. 10th International Symposium

on , vol., no., pp.1, 3-4 Oct. 2008

18. Rama Pulavarthi, Monitoring SOAP

Messages Made Easy With JAX-WS RI 2.0.1,

http://weblogs.java.net/blog/ramapulavarthi/a

rchive/2006/08/monitoring_soap.html,

Accessed on 10th Feb 2012

19. Rama Pulavarthi, Useful Goodies for web

service Developers in JAX-WS 2.1 RI,

http://weblogs.java.net/blog/ramapulavarthi/a

rchive/2007/02/useful_goodies.html,

Accessed on 10th Feb 2012

20. Sandy Carter, ―The New Language of

Business: SOA & web 2.0‖, IBM Press, 2007

21. Siblini, R.; Mansour, N.; Testing web

services, The 3rd ACS/IEEE International

Conference on Computer Systems and

Applications, 2005. pp: 135

22. SOAP Version 1.2 Part 0: Primer. W3C

Recommendation, June 24 2003,

www.w3.org/TR/soap12-part0

23. Tanaka, M.; Ishida, T.; Murakami, Y.;

Morimoto, S.; , "service Supervision:

Coordinating web Services in Open

Environment," web Services, 2009. ICWS

2009. IEEE International Conference on ,

vol., no., pp.238-245, 6-10 July 2009

24. Thomas Erl, ―service-Oriented Architecture:

Concepts, Technology, and Design‖, Pearson

Education, Inc., 2007.

25. Tsai, W.T.; Paul, R.; Yamin Wang; Chun

Fan; Dong Wang; Extending WSDL to

facilitate web services testing, Proceedings of

7th IEEE International Symposium on High

Assurance Systems Engineering, 2002,

pp: 171 - 172

26. Walmsley, Priscilla. Definitive XML Schema.

Prentice-Hall PTR, ISBN 0321146182,

December 2001.

27. web Services Description Language (WSDL)

Version 2.0 Part 1: Core Language. W3C

Working Draft, August 3, 2005.

www.w3.org/TR/wsdl20/

28. web Services Description Language (WSDL)

Version 2.0 Part 2: Adjuncts. W3C Working

Draft, August 3, 2005.

www.w3.org/TR/wsdl20-adjuncts

http://java.sun.com/developer/technicalArticles/J2SE/jax_ws_2_pt2/
http://java.sun.com/developer/technicalArticles/J2SE/jax_ws_2_pt2/
http://weblogs.java.net/blog/kohsuke/archive/2007/02/jaxws_ri_21_ben.html
http://weblogs.java.net/blog/kohsuke/archive/2007/02/jaxws_ri_21_ben.html
http://weblogs.java.net/blogs/ramapulavarthi
http://weblogs.java.net/blog/ramapulavarthi/archive/2006/08/monitoring_soap.html
http://weblogs.java.net/blog/ramapulavarthi/archive/2006/08/monitoring_soap.html
http://weblogs.java.net/blogs/ramapulavarthi
http://weblogs.java.net/blog/ramapulavarthi/archive/2007/02/useful_goodies.html
http://weblogs.java.net/blog/ramapulavarthi/archive/2007/02/useful_goodies.html
http://www.w3.org/TR/soap12-part0
http://www.w3.org/TR/wsdl20-adjuncts

