Lignocellulose Degrading Enzymes from Fungi and Their Industrial Applications

Perinbam Kantharaj¹, Bharath Boobalan¹, Seeni Sooriamuthu², Ravikumar Mani¹

¹PG and Research Department of Botany, Govt. Arts College for Men (Autonomous), Nandanam, Chennai, Affiliated to University of Madras, Tamil Nadu, India; ²School of Biosciences, Mar Athanasios College for Advanced Studies, Tiruvalla, Kerala, India.

ABSTRACT

The rich diversity of fungi and diverse range of enzymes produced by them together make researchers to exploit their potential for various industrial applications. Few of the fungal enzymes have already been harnessed and many other are to be explored and brought into use. Recent studies suggested that the lignin degrading fungi can be used in the bioremediation of aromatic hydrocarbons including dioxins, dibenzofuran, aromatic dyes, etc. Employing fungal enzymes for the treatment of pollutants has gained attraction recent days for their selectivity, specificity and eco-friendly nature. Of these enzymes, peroxidases (lignin peroxidase and manganese peroxidase) and laccases are the two major classes of enzymes involved in biodegradation of lignin and recalcitrant xenobiotics. In addition, cellulase and hemicellulase were found to play a role in the management of lignocellulosic wastes. The present review gives a detailed account on the various lignocelluloses degrading enzymes, their fungal sources and their industrial applications.

Key Words: Peroxidases, Lignocelluloses degradation, Xenobiotics, Fungal sources, Industrial applications

INTRODUCTION

Lignocelluloses are the main structural component of all plants and most of the industries including forestry, agriculture, food, pulp and paper are producing large amount of lignocellulosic wastes¹. Most of the agricultural residues are rich in non-edible lignocelluloses and serve as renewable sources for the production of various value added products including biofuel which can act as the replacement for the fossil fuels³. Alternative fuels of petroleum solve many of the current social problems and concerns, from air pollution and global warming to other environmental improvements and sustainability issues³ In order to exploit the uses of lignocellulosic biomass, several physical and chemical processes have been developed for the separation of cellulose, hemicellulose, and lignin from them. The separation processes include chemical viz. alkali, acid, ammonia and lime and microwave pre-treatments (physical)⁵. The commercial pre-treatment process carries respective drawbacks including decrease in the quality of the polymers, release of by-products that inhibit the fermentation of resulting sugars, etc.

In order to overcome these drawbacks, biocatalysts (enzymes) can be used to improve the superiority of the pre-treatment process⁶. In turn, enzymes produced by wood decaying fungi serve as an important factor for the conversion of organic debris into humus and helps in the carbon and nitrogen cycling. The lignocellulolytic activity of the fungi is also facilitated with the help of extracellular enzymes, such as cellulases, hemicellulases, MnP (Manganese peroxidase), LiP (Lignin Peroxidase) and Lac (Laccase). These enzymes can be used in the management of environmental pollutants such as textile effluents, pulp effluents, organochloride agrochemicals and crude oil residues⁹,¹⁰,¹¹. The filamentous fungi are rich in the production of extracellular lignocellulolytic enzymes, when compared to bacteria and yeast¹². Since, today’s world demand for more constant, active and specific enzymes, wood decaying fungi serve as an ideal candidate for the management of lignocellulosic wastes. In order to exploit the uses of lignocellulosic biomass, enzymes produced...
by wood decaying fungi can be used as an important factor for the conversion of organic debris into humus and helps in production of value added products. Even though many fungal species are involved in the biodegradation of pollutants including xenobiotics, it is essential to investigate their sources, diversity and mode of action. The present review will aid to acquire knowledge of different lignocellulosic enzymes, the fungal strains responsible for their production and their industrial applications.

Plant cell wall
Plant cell wall is a multifaceted composite of polysaccharides, aromatic compounds, proteins, etc. The plant cell wall consists of three important lignocellulosic components which include cellulose, hemicelluloses and lignin. In a plant, the lignocellulose materials comprise 30-50% of cellulose, 15-30% hemicelluloses and 15-35% of non-carbohydrate aromatic polymers the composition vary based on the species, morphology and age of the plant. The secondary cell wall is synthesized and differentiated by cellulose microfibrils with superior crystallinity and altered hemi-cellulose content. The large quantity of lingo-cellulosic materials present in cell wall make them the abundantly present, potentially inexpensive and easily available natural resources for the production of biofuels and high value compounds. The use of lignocellulosic materials primarily involves the separation of the polymeric compounds into cellulose and hemicelluloses. In the absence of potential enzymes, the natural degradation of such lignocelluloses is very slow: however, microorganisms in the soil are capable to degrading the compounds and converting them into sugars at faster rate. Microorganisms capable of growing on lignocellulosic materials produce a wide range of enzymes that could be of scientific and industrial importance. Moreover, the alcohols produced by the utilization of lignocellulosic wastes could be utilized as a biofuel. Also, chemicals like vanillin, xylitol, and furan obtained from lignocellulosic wastes can be used in industrial products including herbicides, pharmaceuticals, and household products.

Wood decaying fungi
The omnipresent fungi are the extensive producers of hydrolyzing enzymes which are responsible for the degradation of carbohydrate present in dead plant biomass. Generally, fungi require favorable temperatures (32° - 90° F), nutrients and sufficient source of oxygen for them to survive and multiply. Since forests represent the major biome of the earth, fungi inhabiting the forests are able to degrade and mineralize the major chunk of ligno-cellulosic substrates. Fungi can be differentiated into different classes based on their distinct spore structures including Ascomycetes, Basidiomycetes and Deuteromycetes. The wood decaying fungi use both enzymatic and non-enzymatic system for the degradation and complete decomposition of wood. In the wood decay process, wood turns discolored and loses weight, strength and density by the action of fungi. Most of the fungi involved in degradation of lignin and hemicelluloses fall into three broader groups namely, brown-rot, white-rot and soft-rot fungi.

Brown-rot fungi
The brown-rot fungi generally reduce the strength of wood upto 75% by decomposing the cell wall polymers such as cellulose and hemicellulose leaving behind the lignin. Brown rot fungi make the wood fragile, dry and crumble into cubes due to the formation of longitudinal and transverse cracks. The brown rot fungi dry out, makes wood into to powder when crushed and it is characterized by reddish brown color and dry, crumbly and brittle consistency. Brown rot is often referred as “dry rot”. *Poria incrassata* is one of the water conducting brown rot fungi having specific rhizomorphs based on root-like water-conducting tubes to transport water from the soil to the wood and can be decayed by the fungus. Once the brown rot fungus infected, it can rapidly multiply from side to side building and destroying large areas of floor covering and walls in one or two years. Examples of such wood decaying brown-rot fungi include *Gloeophyllum trabeum*, *Fomitopsis lilacinogilva*, *Laetiporus portentosus*, *Postia placenta* and *Serpula lacrymans*. In contrast, the numerous enzymes secreted by brown-rot and white-rot fungi enhance the wood degradation.

White-rot fungi
White-rot fungi belong to the family, Basidiomycetes which gradually utilize all major cell wall components such as carbohydrates, lignin and aromatic compounds. *Ceriporiopsis subvermispora* and *Phlebia radiata* are the two best studied white rot fungi to elicit white-rot decay. The white rot fungi produce three classes of extracellular ligninolytic enzymes: laccase, lignin peroxidase and manganese peroxidase that produce H_2O_2 needed for peroxidase activities. The white rot fungi *Rigidoporous lignosus* is known to produce two oxidative enzymes such as MnP and laccase which is capable breaking down the lignin in a synergistic system. The mixed cultures of white-rot fungi are also found to improve laccase production. *Dichornitus squaunalis* appeared to delignify early wood cells, whereas, *Phellinus pini* delignifies latewood cells effectively. Otjen observed decay patterns in oak caused by *Inonotus diyophillis* which demonstrated that the fungus has a preference of early wood fibers and parenchyma cells but not latewood fibers.

Soft rot fungi
Soft rot fungi otherwise referred to as micro fungi were characterized by cavity formation in the secondary walls of the wood cells. Generally, soft rot fungi utilize cellulose and
hemicellulose. Soft rot fungi degrade wood at slower rate compared to brown rot fungi and white rot fungi. In general they are found in wet floor boards, rotting window frames and fence posts. Some of these fungi are common decomposers of cellulose in soil and they are the least specialized wood decaying fungi.

Enzymes involved in lignocellulose degradation

Laccases and peroxidases are major lignolytic enzymes involved in enzymatic lignin degradation\(^5\). In addition, cellulase, hemicellulase and pectinase also play role in lignocellulosic waste degradation. Particular significance is attached to fungi producing the lignocellulosic enzymes (Table. 1) and their role in the process will be discussed.

Cellulases

Cellulase hydrolyses the glycoside bond present between the glucose residues in the organic polymer cellulose (Fig.1). Cellulose can be hydrolyzed by β-1,4-endoglucanases, exoglucanases or 1,4-β-cellobiosidase, and β-glucosidase\(^3\,6-38\). Immanuel\(^9\) reported cellulase production by *Aspergillus niger* and *Aspergillus fumigates* and optimized the parameters including pH, inoculums size, temperature, presence of inducers, etc. *Trichoderma reesei* is identified as the efficient cellulase producer by many researchers to degrade the cellulose\(^9,39,41-42\). Elyas\(^3\) and Dubrovskaya\(^42\) have isolated β-glycosidase enzyme from marine derived fungi such as *Aspergillus* sp. and *Penicillium canescens*. The amount of β-glucosidase in the *Trichoderma* cellulase system is reported to be lower than that needed for the efficient saccharification of lignocelluloses\(^45\). In a recent study, the cellulose produced by the *Aspergillus* sp. was used for the enzymatic saccharification of lignocellulosic agrowaste\(^7\). In addition, the production of cellulase has been widely studied in *P. chrysosporium*, *Sclerotium rolfsii*, *Aspergillus* sp., *Penicillium* sp., *Schizophyllum* sp. and *Trichoderma* sp.\(^46-48\).

Hemicellulase

Hemicellulase such as xylanase are hydrolyses the xylan(Fig. 2) are extensively studied and applied on industrial scale with higher pulp brightness resulting in a lower chemical input\(^9\). In a recent study, a cold active xylanase was isolated from a marine fungus, *Cladosporium* sp\(^5\). In addition, the xylanase and endo-xylanase production has been widely studied in fungi such as *Penicillium thomii*\(^2\), *P. pinophilum*\(^2,52,53\), *A. niger*\(^44\) and *Ceratocystis paradoxa*\(^49\). From an industrial point of view, an alkaline xylanase producing fungi, *A. niger*\(^46\) and *P. canescens*\(^2\) were isolated from marine sources.

Pectinase

The pectinolytic enzymes are produced by both plants and microorganisms. In plants, the pectinases are concerned with fruit ripening and softening whereas, pectinase produced by microorganisms helps in the degradation of the dead vegetable biomass for their utilization in soil fertilizer and nutrient recycling\(^58,59\). The pectinases degrade the pectins (Fig. 3) via depolymerization and de-esterification reactions\(^60\). Pectinase production has been studied in the following group of microscopic fungal species: *Aspergillus*, *Penicillium*, *Colletotrichum*, *Sclerotina*, *Fusarium*, *Trichoderma*, *Verticillum*, *Sclerotium*, and *Geotrichum*\(^61-66\). Among them *A. niger* was found to be a good producer of commercial\(^67,68\). Many industrial firms are involved in the commercial production of pectinases used in protoplast isolation whose purity and activity vary from one source to another. Pectinase production has also been studied in phytopathogenic Ascomycetes including, Neurospora crassa, Thermoascus aurantiacus, Rhizoctonia sp\(^69,70\), yeast like Saccharomyces cerevisiae\(^71\) and Zygomycetes such as Mucour sp. and Rhizopus sp.\(^72,73\).

Lignin Peroxidase

Lignin peroxidases are the heme glycoprotein that plays a vital role in lignin degradation (Fig. 4), which cleaves C-C bonds and oxidizes benzyl alcohols to aldehydes or ketones\(^74,75\). Lignin peroxidases act on both phenolic (e.g. syringic acid, guaiacol, catechol, vanillyl alcohol, acteosyringone) and non-phenolic lignin substrates\(^25\). Mostly, basidiomycetes are shown to produce efficient lignin peroxidases\(^76,72\). Extracellular lignolytic enzymes are prominently produced by *P. chrysosporium* and *P. radiata*\(^*72*\) whereas *Coriolus versicolor* are capable of producing intracellular lignolytic enzymes\(^78\). Researchers have studied the lignin peoxidase producing ability of different fungi including *P. chrysosporium*\(^79\), *T. versicolor*\(^80\), *Pleurotus ostreatus*\(^81\), *Panus* sp., *P. coccineus*, *Perenniporia medullapanis*, and *P. sanguineus*\(^82\).

Manganese peroxidase

Manganese peroxidase degrades the lignin mainly by attacking phenolic lignin component\(^83\). In the presence of H\(_2\)O\(_2\), manganese peroxidase oxidizes the phenolic structures by converting Mn\(^{2+}\) to Mn\(^{3+}\). Oxalate and malonate are the mediators that produce carbon centered radicals, peroxyl radicals and superoxide radicals which improves the effective lignin-degrading system\(^83,25\). Manganese peroxidase is an essential component to certain basidiomycetes and some wood decaying white-rot fungi, which secrete manganese peroxidase in several forms into their environment. Among the basidiomycetes, *Agaricus bisporus*\(^84\), *Lenzes betulinus*\(^85\), *Panus tigrinus*\(^86\) and *Nematoloma frowardii*\(^87\) are identified to produce more stable manganese peroxidases. Järvinen\(^88\) have studied MnP production on selected lignin degrading organisms *P. chrysosporium*, *Physiosporinus rivialosus*, *P. radiata* and *Bjerkandera* sp. and found *P. chrysosporium* as best manganese peroxidase producer. Bonugli santos\(^89\) isolated marine fungi, *Mucor racemosus* which possess the ability to produce salt tolerant manganese peroxidase.
Laccase

Laccases are the copper containing polyphenol oxidases which enable degradation of phenolic compounds and also reduce molecular oxygen to water (Fig. 5)90-92. Laccases oxidize the phenolic units in lignin to phenoxy radicals, which can lead to aryl-C cleavage93. Laccase can also oxidize non-phenolic substrates in the presence of certain auxiliary substrates94. A large variety of fungal strains isolated from several sea grasses, algae and decaying wood samples possess the ability to produce laccase enzyme. Atalla95 have isolated *Trematosphaeria mangrovei* from mangrove ecosystem which produces laccase enzyme at significant quantity. A thermo stable, metal-tolerant laccase is reportedly produced by marine-derived fungi, *Cerrena unicolor*96. Various researchers have isolated laccase producing fungi from different sources including *Trichoderma harzianum*97, *Trichoderma atroviride*98 and *Trichoderma longibrachiatum*99, *Trametes versicolor*100, *Lentinus tigrinus*101, *Trametes pubescens*102, *Cyathus bulleri*103, *Paecilomyces* sp.104, *P. chrysosporium*105, *Lentinus edodes*106 and *Pleurotus ostreatus*107,81. *Ganoderma lucidum*108, *Alternaria tenuissima*109 and *Trichoderma* sp.92.

Applications of lignocellulolytic enzymes

Lignocellulolytic enzymes are industrially very useful and the fungal cellulases are having emerging applications in various industries like fruit juice processing, ruminate nutrition for improving digestibility and de-inking of paper90,110. A cellulase produced by *Aspergillus* sp. was used as refining aid for cotton comber pulp, and was changed into value added security paper111. The cellulase obtained from fungal sources also plays a key role in the preparation of household detergents and are also used in textile industry for bio-polishing of fabrics, stonewashing of denim112. The cellulase is also used in the animal feeds for increasing the nutritional quality, to develop digestibility113-115. Fungal hemicellulases are used in the production of chemical pulps and improving pulp beat ability of unbleached pulps116-117.

Fungal pectinases are being used in other industries such as textiles, plant fiber processing, tea, coffee, oil extraction, treatment of industrial wastewater, paper making, etc.119-120. Among the fungal sources, *A. niger* produces commercial pectinases which are used in the fruit juice and wine making industries. Pectinase accounts for 7.5% in the global enzyme market costing approximately 75 million USD121. The major applications of the pectinase enzymes are found in vegetable and fruit processing, where the removal of undesired pectin during extraction and clarification of fruit juice, wine, and cider is carried out.

There is an enormous interest in wood decaying fungi for large scale biodegradation applications due to their ability to produce large amount of extracellular lignocellulolytic enzymes28. Mtui and Masalu122 have isolated a lignocellulolytic fungus, *Laetiporus sulphureus*, from mangrove forest having the ability to degrade cellulose, hemicellulose and lignin presented in the mangrove litter. Immobilized enzymes are employed in the pharmaceutical, food and chemical industries122. Immobilization also facilitates the efficient recovery and reuse of costly enzymes, and enables their use in continuous, fixed-bed operation123. The enzyme produced by the fungi was also employed for the detoxification of aromatic pollutants like agrochemicals and industrial effluents. The lignolytic white rot fungi have found their potential applications in the fields such as decolorization of industrial dyes, bleaching of pulp from textiles and paper, and degradation of organo pollutants, etc.28,124. The salt tolerant lignin degrading enzymes from fungi can be used for the effective bioremediation of environment pollutants125. The MnP finds their major applications in biomechanical pulping, dye decolorization, biorefineries, bioremediation and pulp bleaching126,127. In modern sensitive studies involving plant protoplast fusion and gene transfer processes, purified cellulases and pectinases find immense use and Japanese are the pioneers in this field.

Sahadevan128 reported lignin-degrading enzymes, LiP, MnP and Laccase from *MVI.2011* an alkalophilic fungus to afford an appropriate biological substitute to treat highly alkaline effluents like pulp, paper industry and waste water. Indira Priyadarshini129 described that the ability of fungi to produce laccase was linked with the effective decolorization of azo dyes which can be exploited for the screening of laccase producers. The fungal laccases are widely used in the industries such as food, textile, wood processing, pharmaceutical and chemical industries. In recent years, laccases are widely studied for textile industry in denim bleaching130,131. Another important application of laccase is the bioremediation of poisonous organic pollutants like chlorophenols and polycyclic aromatic hydrocarbons from the soil132,133. The stable laccase enzyme produced by *A. tenuissima* is being used in several bioprocesses, such as biopulping, biobleaching, bioremediation, food technological uses, and treatment of industrial waste water134-136.

CONCLUSION

Among the three groups Ascomycetes, Basidiomycetes and Deuteromycetes organisms producing lignocellulosic enzymes, Basidiomycetes group of fungi are considered as the promising candidates for the degradation lignocellulosic biomass. Even though many fungal species are involved in the biodegradation of pollutants, it is essential to augment the reactions by the development of new strains and employing microbial consortium or enzymatic cocktails for industrial applications. The enzyme production by the filamentous fungi are having biotechnological importance due to their applications in different fields including plant protoplast culture and
protoplast fusion. The typical ecosystems present a veritable emporium of such organisms which are as yet poorly understood and commercially less exploited. When compared to cellulose and hemi-cellulose, lignin is found to be most difficult to degrade. For the hydrolysis of lignin, in addition to physical and chemical elements, addition of enzyme will be effective in terms of economic use as well as eco-friendly and sustainable use. The present review will aid to acquire knowledge of different lignocellulosic enzymes, the fungal strains responsible for their production and their industrial applications. Further studies are necessary to investigate the industrial applications of these enzymes for emerging production and innovation of new fungal strains.

ACKNOWLEDGMENT

Authors also acknowledge the immense help received from the scholars whose articles are cited and included in references of this manuscript. The authors are also grateful to authors/ editors/ publishers of all the articles, journals and books from where the literature for this article has been reviewed and discussed.

Conflict of interest

There is no conflict of interest.

REFERENCES

113. Tolan JS, Foody B. Cellulase from submerged fermentation In: Advances in Biochemical Engineering/Biotechnology Re-

Table 1: List of fungi producing lingo-cellulolytic enzymes

<table>
<thead>
<tr>
<th>ORGANISM</th>
<th>ENZYME PRODUCED</th>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. niger, A. fumigates</td>
<td>Cellulase</td>
<td>Immanuel et al.99</td>
</tr>
<tr>
<td>T. reesei</td>
<td>Cellulase</td>
<td>Stricker et al.40; Kubicek et al.43</td>
</tr>
<tr>
<td>Aspergillus sp.</td>
<td>Cellulase</td>
<td>Elyas et al.45</td>
</tr>
<tr>
<td>P. canescens</td>
<td>Cellulase</td>
<td>Dubrovskaya et al.44</td>
</tr>
<tr>
<td>Aspergillus sp.</td>
<td>Cellulase</td>
<td>Bhavsar et al.7</td>
</tr>
<tr>
<td>P. chryosporium</td>
<td>Cellulase</td>
<td>Saratale et al.48</td>
</tr>
<tr>
<td>Trichoderma viride</td>
<td>Cellulase</td>
<td>Iqbal et al.46</td>
</tr>
<tr>
<td>Cladosporium sp.</td>
<td>Xylanase</td>
<td>Del-Cid et al.50</td>
</tr>
<tr>
<td>P. thomii</td>
<td>Xylanase</td>
<td>Palaniswamy et al.9</td>
</tr>
<tr>
<td>P. pinophilum</td>
<td>Xylanase</td>
<td>Li et al.56; Lee et al.53</td>
</tr>
<tr>
<td>A. niger</td>
<td>Xylanase</td>
<td>Sharma et al. 54</td>
</tr>
<tr>
<td>C. paradoxa</td>
<td>Xylanase</td>
<td>Dekker and Richards55</td>
</tr>
<tr>
<td>A. niger</td>
<td>Xylanase</td>
<td>Raghukumar et al.66</td>
</tr>
<tr>
<td>P. canescens</td>
<td>Xylanase</td>
<td>Burtseva et al.57</td>
</tr>
<tr>
<td>A. niger</td>
<td>Pectinase</td>
<td>Sakai et al.58; Martens and Schaap68</td>
</tr>
<tr>
<td>N. crassa</td>
<td>Pectinase</td>
<td>Marcus et al.59</td>
</tr>
<tr>
<td>Organism</td>
<td>Enzyme</td>
<td>Authors</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>T. aurantiacus</td>
<td>Pectinase</td>
<td>Rombouts and Pilnik</td>
</tr>
<tr>
<td>Rhizoctonia sp.</td>
<td>Pectinase</td>
<td>Martins et al.</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>Pectinase</td>
<td>Poondlæt et al.</td>
</tr>
<tr>
<td>Mucor sp.</td>
<td>Pectinase</td>
<td>Kashyap et al.</td>
</tr>
<tr>
<td>Rhizopus sp.</td>
<td>Pectinase</td>
<td>Kolarova and Augustin</td>
</tr>
<tr>
<td>P. radiate</td>
<td>Lignin peroxidases</td>
<td>Lee et al.</td>
</tr>
<tr>
<td>C. tersicolor</td>
<td>Lignin peroxidases</td>
<td>Lobarzewski</td>
</tr>
<tr>
<td>Schizophyllum commune</td>
<td>Lignin peroxidases</td>
<td>Asgher et al.</td>
</tr>
<tr>
<td>P. chrysosporium</td>
<td>Lignin peroxidases</td>
<td>Zeng et al.; Junnarkar et al.</td>
</tr>
<tr>
<td>T. versicolor</td>
<td>Lignin peroxidases</td>
<td>Johansson et al.; Asgher et al.</td>
</tr>
<tr>
<td>P. ostreatus</td>
<td>Lignin peroxidases</td>
<td>Sivakami et al.</td>
</tr>
<tr>
<td>P. sanguineus</td>
<td>Lignin peroxidases</td>
<td>Pointing et al.</td>
</tr>
<tr>
<td>A. bisporus</td>
<td>Manganese peroxidase</td>
<td>Lankinen et al.</td>
</tr>
<tr>
<td>L. betulinus</td>
<td>Manganese peroxidase</td>
<td>Hoshino et al.</td>
</tr>
<tr>
<td>T. suaveolens</td>
<td>Manganese peroxidase</td>
<td>Knezevic et al.</td>
</tr>
<tr>
<td>P. tigrinus</td>
<td>Manganese peroxidase</td>
<td>Lisov et al.</td>
</tr>
<tr>
<td>Trametes villosa</td>
<td>Manganese peroxidase</td>
<td>Silva et al.</td>
</tr>
<tr>
<td>N. frowardii</td>
<td>Manganese peroxidase</td>
<td>Hilden et al.</td>
</tr>
<tr>
<td>P. chrysosporium</td>
<td>Manganese peroxidase</td>
<td>Järvinen et al.</td>
</tr>
<tr>
<td>P. rivulosus</td>
<td>Manganese peroxidase</td>
<td>Hakala et al.</td>
</tr>
<tr>
<td>P. radiate</td>
<td>Manganese peroxidase</td>
<td>Hilden et al.</td>
</tr>
<tr>
<td>Bjerkandera sp.</td>
<td>Manganese peroxidase</td>
<td>Järvinen et al.</td>
</tr>
<tr>
<td>M. racemosus</td>
<td>Manganese peroxidase</td>
<td>Bonugli santos</td>
</tr>
<tr>
<td>T. mangrovei</td>
<td>Laccase</td>
<td>Atalla, et al.</td>
</tr>
<tr>
<td>C. unicolor</td>
<td>Laccase</td>
<td>D’Souza-Tico et al.</td>
</tr>
<tr>
<td>T. harzianum</td>
<td>Laccase</td>
<td>Holker et al.</td>
</tr>
<tr>
<td>T. atroviride</td>
<td>Laccase</td>
<td>Velazques et al.</td>
</tr>
<tr>
<td>T. longibrachiatum</td>
<td>Laccase</td>
<td>Kiiskinen et al.</td>
</tr>
<tr>
<td>T. versicolor</td>
<td>Laccase</td>
<td>Han et al.; Asgher et al.</td>
</tr>
<tr>
<td>L. tigrinus</td>
<td>Laccase</td>
<td>Ferraroni et al.</td>
</tr>
<tr>
<td>T. pubescens</td>
<td>Laccase</td>
<td>Shleev et al.</td>
</tr>
<tr>
<td>C. bulleri</td>
<td>Laccase</td>
<td>Salony et al.</td>
</tr>
<tr>
<td>Paecilomyces sp.</td>
<td>Laccase</td>
<td>Liang et al.</td>
</tr>
<tr>
<td>P. chrysosporium</td>
<td>Laccase</td>
<td>Viswanath et al.</td>
</tr>
<tr>
<td>L. edodes</td>
<td>Laccase</td>
<td>Shanmugam et al.</td>
</tr>
<tr>
<td>P. ostreatus</td>
<td>Laccase</td>
<td>Patel et al.; Sivakami et al.</td>
</tr>
<tr>
<td>G. lucidum</td>
<td>Laccase</td>
<td>Li et al.</td>
</tr>
<tr>
<td>T. suaveolens</td>
<td>Laccase</td>
<td>Knezevic et al.</td>
</tr>
<tr>
<td>A. tenuissima</td>
<td>Laccase</td>
<td>Abd El Aty et al.</td>
</tr>
<tr>
<td>Trichoderma sp.</td>
<td>Laccase</td>
<td>Divya et al.</td>
</tr>
</tbody>
</table>
Kantharaj et al.: Lignocellulose degrading enzymes from fungi and their industrial applications

Figure 1: Mechanism of action of Cellulase.

Figure 2: Mechanism of action of Xylanase.
Figure 3: Mechanism of action of Pectinases.147

PMG, polymethylgalacturonases; PG, polygalacturonases; PE, pectinesterase; PL, pectin lyase

Figure 4: Mechanism of action of Lignin peroxidase.

Figure 5: Mechanism of action of Laccase.