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ABSTRACT 
In this paper, in order to show some interesting phenomena of fifth-order hyperchaotic autonomous 
electric circuit with a smooth cubic nonlinearity, different kinds of attractors, time waveforms and 
corresponding power spectra of systems are presented, respectively. The perturbation transforms an 
unpredictable hyperchaotic behavior into a predictable hyperchaotic or periodic motion via stabilization 
of unstable, aperiodic, or periodic orbits of the strange hyperchaotic attractor. One advantage of the 
method is its robustness against noise. A theoretical analysis of the circuit equations is presented, along 
with experimental simulation and numerical results.  
Keywords: Fifth-order autonomous electric circuit; smooth cubic nonlinearity; chaos; hyperchaos. 
 
INTRODUCTION
Chaos and its related bifurcation phenomena have 
been an area of intense research in the last three 
decades. From the 1980s to the 1990s, simple and 
natural chaos generating circuits were proposed 
and laboratory experiments were carried out [1-5]. 
Matsumoto etal. insisted that their proposed 
circuits are natural (not artificial) circuits with 
only two terminal nonlinear elements. One of the 
major problems in this field is in the difficulty to 
prove the generation of chaos in a rigorous sense. 
A lot of researchers attempted to solve this 
problem by adopting simpler dynamics. As far as 
we know, one approach is based on the use of a 
singular perturbation (slow–fast) method, and the 
other is based on the use of a piecewise-linear 
technique [6-9].  Over the last two decades, 
hyperchaos has been intensively studied in many 
engineering-oriented applied fields, such as 
nonlinear circuits, secure communications, lasers, 
neural networks, control, synchronization, and so 
on. In chaotic secure communication, a chaotic 
signal is used to mask the message to be 
transmitted. As we know, the normal chaotic 

systems have one positive Lyapunov exponent. 
Perez and Cerderia proved that the messages 
masked by such a normal chaotic system are not 
always safe. However, Pecora found that this 
problem can be overcome by using the higher-
dimensional hyperchaotic systems, which have an 
increasing randomness and higher 
unpredictability. In general, a hyperchaotic system 
is defined as a chaotic system with at least two 
positive exponents, implying that its dynamics are 
expended in several different directions 
simultaneously [7]. It means that hyperchaotic 
systems have more complex dynamical behaviors 
that can be used to improve the security of chaotic 
communication systems. Therefore, the theoretical 
design and circuitry realization of various 
hyperchaotic signals have recently become the 
focal research topics. Historically, hyperchaos was 
firstly reported by Rossler. That is, the noted four-
dimensional (4D) hyperchaotic autonomous 
system. However, the hyperchaos was firstly 
discovered in electronic circuits by Matsumoto 
and his colleagues [5]. Over the last two decades, 



S. Manimaran et al HYPERCHAOTIC BEHAVIOR OF A FIFTH-ORDER AUTONOMOUS ELECTRIC CIRCUIT 
 

  Int  J  Cur  Res  Rev,  Oct  2012 / Vol  04 (20) ,  
Page 74 

 
  

there are various hyperchaotic systems discovered 
in high-dimensional systems. Typical examples 
are hyperchaotic Rossler system, hyperchaotic 
Lorenz–Haken system, hyperchaotic Chua’s 
circuit and hyperchaotic modified Chua’s circuit 
[10-16].  
Very recently, hyperchaos was found numerically 
and experimentally by adding a simple state 
feedback controller or a sinusoidal parameter 
perturbation controller in the generalized Lorenz 
system, Chen system, Lu system and a unified 
chaotic system. In this paper, a novel five-
dimensional hyperchaotic system is constructed 
based on a modified autonomous Van der Pol 
Duffing oscillator [17]. The strong hyperchaotic 
nature is then verified by power spectrum, 
investigating its time waveforms and numerical 
confirmation. Furthermore, all above dynamical 

behaviors are verified by physically electronic 
circuit. Experimental observations are also given 
in this paper. 
 
Circuit Description and Simulation Results 
In order to understand chaotic circuit theory, it is 
important to consider the following problems: 
theoretical evidence for chaos, classification of 
chaos (e.g., classification by fractal dimension) 
and route to chaos [9]. These problems have been 
considered reasonably well for five dimensional 
circuits, but it is hard to analyze these problems in 
higher dimensional circuits. This paper considers 
these problems in a simple five-dimensional 
circuit of Fig. 1. Applying Kirchoff's laws, the set 
of five first-orders coupled autonomous 
differential equations as given below: 
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While V1, V2 and V3 are the voltages across the Capacitors C1, C2 and C3, iL1 and iL2 denotes the currents 
through the inductors L1 and L2 respectively and the characteristics of linear negative conductance is 
mathematically represented by

1 1 1Gi G V  . Here the term 1 2( )Ni f V V   representing the characteristic 

of the smooth cubic nonlinearity can be expressed mathematically: 
(2) 3

1 2 1 2 1 2( ) ( ) ( )Ni f V V a V V b V V                                                                                          
For our present experimental study we have 
chosen the following typical values of the circuit 
in Fig. 1. Were L1 = 33 mH, L2 = 33 mH, C1 = 85 
nF, C2 = 10 nF, C3 = 100 nF and the 
characteristics of linear negative conductance G1 = 
-0.5 mS. Here the variable capacitor ‘C1’ is 
assumed to be the control parameter. By 
decreasing the value of ‘C1’ from 85 nF to 45 nF, 
the circuit behavior of Fig. 1 is found to transit 

from a period-doubling route to chaos and then to 
hyperchaotic attractor through period-doubling 
bifurcation behavior followed by period-doubling 
windows and boundary crisis [15-16]. The 
hyperchaotic attractors of fifth-order autonomous 
circuit with the smooth cubic nonlinearity 
projected onto different planes are shown in Fig. 2. 
Experimental time series were registered using a 
simulation storage oscilloscope for discrete values 
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of C1 and C2 are shown if Fig. 3. 
The distribution of power in a signal x(t) is the 
most commonly quantified by means of the power 
density spectrum or simply power spectrum. It is 
the magnitude-square of the Fourier transforms of 
the signal x(t). It can detect the presence of 

hyperchaos when the spectrum is broad-banded. 
The power spectrum corresponding to the voltages 
V1(t) and V2(t) waveforms across the capacitors C1 
and C2 for the hyperchaotic regimes are shown in 
Fig. 4 which resembles broad-band spectrum 
noise. 

NUMERICAL CONFIRMATION 
The hyperchaotic attractor of fifth-order autonomous circuit as shown in Fig. 1 is studied by numerical 
integration of the normalized differential equations [14]. For a convenient numerical analysis of the 
experimental system given by Eqns. (1), we rescale the parameters as: 
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   , 11CLt  and then redefine τ as t. Eqns. (1) and (2) reduce to the following set 

of normalized equations of the fourth-order hyperchaotic autonomous electric circuit as given below: 
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The dynamics of Eqns. (3) now depends upon the 
parameters α1, α2, υ1, υ2 γ, and β. The experimental 
results have been verified by numerical simulation 
of the normalized Eqns. (3) using the standard 
fourth-order Runge-Kutta method for a specific 
choice of system parameters employed in the 
experimental simulation results. That is, in the 
actual experimental set up the capacitor ‘C1’ is 
decreased from C1 = 85 nF downward to 45 nF. 
Therefore in the numerical simulation, we study 
the corresponding Eqns. (3) for in the range C1 = 
85 nF to 45 nF. From our numerical 
investigations, we find that for the value of ‘C1’ 
below 85 nF periodic limit cycle motions is 
obtained. When the value of ‘C1’ is decreased to 
lower than 45 nF particularly in the range C1 = (85 
nF to 45 nF) the system displays a period-
doubling route to chaos and then to hyperchaos 

through boundary condition [8]. These numerical 
results of the hyperchaotic attractor of fifth-order 
autonomous circuit with the smooth cubic 
nonlinearity projected onto different planes are 
shown in Fig. 5.  Figure 6. Shows the numerical 
chaotic time series was registered using a discrete 
value of ‘C2’ serving as the control parameter. It is 
gratifying to note that the numerical results agree 
qualitatively very well with that of the 
experimental simulation results. 
 
CONCLUSIONS 
We have designed and investigated a hyperchaotic 
behavior of a fifth-order autonomous electric 
circuit. The circuit provides a higher bandwidth of 
strong chaotic signal with buffered output. 
Functionally was demonstrated using a 
commercial voltage feedback op-amp. Its 
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simplicity arises from the fact that (i) The negative 
conductance is a simple op-amp impedance 
converter. (ii) The simple nonlinear element is 
synthesized from general purpose diode (1N4148 
diode).   (iii) The circuit equations are the most 
simple because of there is no locally active resistor 
(R) in the circuit, where the capacitance (C1) as the 
control parameter. The attractive features of this 
circuit are the presence of period-doubling route to 
chaos and then to hyperchaos followed by period-
doubling windows and boundary crisis etc.  It is of 
further interest to study these aspects also in this 
system as well as the intermittency route to chaos 
and synchronization of coupled chaotic circuits of 
the present system for improved high security 
communication systems. 
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Figure 1. Circuit realization of the fifth-order hyperchaotic autonomous electric circuit 

 

 

 

 

 
   







S. Manimaran et al HYPERCHAOTIC BEHAVIOR OF A FIFTH-ORDER AUTONOMOUS ELECTRIC CIRCUIT 
 

  Int  J  Cur  Res  Rev,  Oct  2012 / Vol  04 (20) ,  
Page 79 

 
  

 
Figure 6. Numerical results of the hyperchaotic time series 
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