

Vol 05 issue 05

Section: General Sciences Category: Research Received on: 11/11/12 Revised on: 23/12/12 Accepted on: 19/01/13

CALCULATING ESR PARAMETERS (H^& $\Delta E_{h f}$) OF 4d AND 5d TRANSITION METAL ION COMPLEXES: A DFT STUDY.

Harminder Singh¹, A.K. Bhardwaj², M.L.Sehgal³, Susheel K. Mittal⁴

¹Lovely Professional University, Phagwara (India)
 ²Department of Chemistry, D.A.V. College, Jalandhar (India)
 ³Former Head, Department of Chemistry, D.A.V. College, Jalandhar (India)
 ⁴School of Chemistry & Biochemistry, Thapar University, Patiala (India)

E-mail of Corresponding Author: smittal@thapar.edu

ABSTRACT

Density functional theory implemented in ADF 2009.01 was used to calculate the values of two ESR parameters namely effective spin Hamiltonian [H^] and hyperfine coupling energy (ΔE_{hf}) along with the values of four factors (g, a, Q, and I) which contribute to the total value of the Hamiltonian for 45 complexes of six congeners of 2nd and 3rd transition series metal ions such as Zr (III), Hf (III); Nb (IV), Ta(IV); Mo(III), W(III); Tc (II), Re(II); Ru (III), Os(III); Rh (IV), Ir (IV). Four relations which hold good both in regular (O_h) as well as distorted stereochemistries (D_{6h}, D_{3d}, D₁₂, C_{2v}, C₁, C₂) of these complexes were applied. The basis sets used were DZ or TPZ. The complexes were optimized to obtain ESR (g₁₁, g₂₂, g₃₃, g_{iso}; a₁₁, a₂₂, a₃₃, A ten) and NQR parameters [η ; q₁₁, q₂₂, q₃₃ and NQCC] which were then used to calculate [H^] and [$\Delta E_{h f}$].

INTRODUCTION

Effective spin Hamiltonian (H^) is а mathematical expression that determines energy of an ESR transition in a paramagnetic complex. The Hamiltonian depends upon a number of ESR parameters [anisotropic and isotropic splitting factors (g₁₁, g₂₂, g₃₃, g_{iso}), hyperfine coupling constants (a₁₁, a₂₂, a₃₃, A_{ten})], NQR parameters [electric field gradient or efg (q_{11}, q_{22}, q_{33}) , Nuclear Quadrupole Constant (Q)¹, total electronic spin (S), Bohr Magneton of both the electron (β_e) and of the nucleus (β_n), nuclear spin quantum number (I), g_n (nuclear magnetic ratio) along with nature of the surrounding nuclei if they possess quadrupole moments (I≥1).

When certain commands were given to the ADF 2009.01, we obtained two ESR parameters (isotropic and anisotropic g, a) and three NQR [asymmetric coefficient (η), anisotropic electric field gradient or *efg* (q), nuclear quadrupole coupling constant or NQCC (Q)] parameters and optimization parameters of complexes. The three (g, a, Q) of these five parameters were used to calculate another two ESR parameters [effective spin Hamiltonian (H^) and hyperfine coupling energy (Δ E h f)] of complexes.

The need for taking up this study arose because not much work was reported ⁽¹⁻²⁹⁾ on ESR studies of 4d and 5d metal ion complexes. In fact, theoretical calculation of Effective Spin Hamiltonian (H[^]) on such a vast number of complexes was never reported before because:

(i) High values of spin orbit coupling constants ($\lambda_{metal ion}$) of these metal ions would not allow

 $^{^1}$ Q or e Q is the nuclear quadrupole moment. q Or e q is the electric field gradient. The product of the quantities (e Q × e q= e²Qq) is nuclear quadrupole coupling constant (Q).

exact determination of the ESR parameters experimentally.

(ii) Cryoscopy conditions generally needed in low energy microwave region (X band: 9000-10000 MHz) were difficult to obtain and cumbersome to maintain.

The *relevance* and the *objective* of present work lied in the fact that simply by applying DFT ⁽³⁰⁻³¹⁾ to ADF 2009.01; we were able to do away with all these limitations.

Four relations were selectively used to calculate H^{\wedge} and ΔE_{hf} parameters of 45 complexes such

as $[ZrX_6]^{3-}(X=Cl, Br)$, $[HfX_6]^{3-}(X=F, Cl, Br)$, $[Hf (NH_3)_6]^{3+}$, $[Nb (NH_3)_6]^{4+}$, $[NbX_6]^{2-}(X=F, Cl, NCS)$, $[TaX_6]^{2-}(X= Cl, Br)$, $[MoX_6]^{3-}(X=F, Cl, Br, NCS)$, $[Mo(OH_2)_6]^{3+}$, $[Mo(NH_3)_6]^{3+}$, $[WX_6]^{3-}(X=F, Cl, Br)$, $[W(OH_2)_6]^{3+}$, $[W(NH_3)_6]^{3+}$, $[TcX_6]^{4-}(X= Cl, Br, NCS)$, $[Tc (NH_3)_6]^{2+}$, $[ReX_6]^{4-}(X= Cl, Br)$, $[Re(NH_3)_6]^{2+}$, $[RuX_6]^{3-}(X=F, Cl, Br)$, $[OsX_6]^{3-}(X=F, Cl, Br)$, $[Os(NH_3)_6]^{3+}$, $[RhX_6]^{2-}$ (X=F, Cl, Br), $[Ir (NH_3)_6]^{4+}$, $[IrX_6]^{2-}$ (X=F, Cl, Br), $[Ir (NH_3)_6]^{4+}$.

Calculation of ESR parameters (32-52)

(a) Effective Spin Hamiltonian (H^):

Four factors which contribute to H[^] are: g, a, Q and the interaction of nuclear magnetic moment with external magnetic field (I). The following three relations were used to calculate H[^](MHz).

$H^{A} = \beta e[g_{11}.Hx.S_x + g_{22}.Hy.S_y + g_{33}.Hz.S_z] + [a_{11}.S_x.I_x + a_{22}.Hy.S_y] + [a_{11}.S_y] + [a_{11}.S_y] + [a_{12}.S_y] $	$2.S_y.I_y + a_{33}.S_z.I_z + Q [I_z-1/3.I]$
$(I+1)$] - $[g_n, \beta_n, H_0, I]$	[1]
$H^{A} = \beta_{e} [g_{ll} .Hz. S_{z} + g_{\perp} (Hx. S_{x} + Hy. S_{y})] + [a_{ll} .Sz .Iz + a_{\perp}(S_{x}. A_{k})]$	$I_x + S_y.I_y) + Q[I_z-1/3. I(I+1)] -$
$[g_{n}.\beta_{n}.H_{0}.I]$	[2]
$H^{A} = \beta_{e} [g_{iso}.H_{0}.S] + [A_{ten}.S.1] + Q.I^{2} - [g_{n}.\beta_{n}.Ho. I]$	[3]

[1]Was used for systems with different **g** and **a** values.[2]Was applied in axially symmetric systems and [3] would hold good for systems with same or nearly same **g** value or both **g** and **a** values. The first and the last terms in [1-3] were in ergs and the other two in MHz. (6.627 X 10⁻²¹ erg = one MHz); β_e =1.3994 MHz; $\beta_{H^*} = \beta_{e'}$ 1836. g n had a definite value for each metal.

(b) Hyperfine Coupling Energy

• Divide by molecular mass for calculation of (I)

METHODOLOGY

After optimization of the complexes by ADF 2009.01, the software was run by applying Single Point, LDA^{*}, Default, Spin Orbit, Unrestricted, None and Collinear commands by using DZ^{*} or TPZ^{*} Basis sets in all the 45

complexes except for $[Os (NH_3)_6]^{3+}$ and $[Rh(NH_3)_6]^{4+}$ where LDA was replaced by GGABP*. Each complex with NYSOM* symmetry generated an OUTPUT file of its own. It contained values of ESR (g₁₁, g₂₂, g₃₃ and g_{iso}; a₁₁, a₂₂, a₃₃ and A t e n), NQR (η , q₁₁, q₂₂, q₃₃, NQCC) and optimization [geometry, dipole moment, bonding energy, total energy (X c) parameters having contributions from LDA and GGA*components; each being further made up

^{*} Acronyms are: LDA (Local Density Approximation); DZ (Double Zeta) TPZ (Triple Zeta) GGA BP (Generalized Gradient Approximation Becke Perdew); Nysom (Normalized)

of Exchange and Correlation parts]. The bonding energy was computed as an energy difference between the molecule and fragments. As the fragments were single atoms, they were usually computed as Spherically Symmetric and Spin-Restricted. So this usually did not represent the true atomic ground state ⁽⁵³⁻⁵⁴⁾.

RESULTS

Tables: 1.1-1.12 and 1.1-1 A-1.12A gave values of optimization parameters of 12 metals of the 2^{nd} and 3^{rd} transition series and their 45 complexes respectively. Tables: 1.1B - 1.12B contained ESR and NQR parameters like g_{\perp}, g_{\parallel} , $g_{iso}; a_{\perp}, a_{11}, A_{ten}$ and Q along with contributions from their respective factors. It also contained contribution from the fourth factor called interaction of nuclear magnetic moment with external magnetic field factor (I) in H^A. These tables also gave ΔE_{hf} values of the complexes as calculated by [4].

[I] Calculation of H[^] for Zr (III) and Hf (III) Complexes

(a) $[ZrX_6]^{3-}$ (X = F, Cl) in Table: 1.1B were of axial symmetry with (a) two of the three **g** called \mathbf{g}_{\perp} being the same and the third of higher value was called \mathbf{g}_{\parallel} . (b) Two of the three **a** called \mathbf{a}_{\perp} were of same value and the third of higher value was called \mathbf{a}_{11} . (c) Two values of **q** out of the

three were the same (d) η =0. Relation [2] was applied to calculate their H[^].

(Put S_x=S_y=S_z=1/2; I_x=I_y=I_z=2.5 and g $_n$ = -0.5214480).

(**b**) The Hf (III) complexes were categorized as follows (Table: 1.2 B):

(i) $[\text{Hf } X_6]^{3-}$ (X=F, Br) had an axial symmetry with (a) two of the three **g** called \mathbf{g}_{\perp} being the same and the third with higher value was called \mathbf{g}_{\parallel} . (b) Two of the three **a** called \mathbf{a}_{\perp} being the same and the third with higher value was called $\mathbf{a}_{11.}$ (c) Two of the three **q** values were the same. (d) η =0. Relation [2] was applied to calculate their H^.

(ii) In [Hf Cl_6]³⁻, all **g** and **a** parameters possessed same values respectively.

Relation [3] was applied to calculate its H[^].

(iii) As **g** and **a** values respectively differ in [Hf $(NH_3)_6]^{3+}$, the relation [1] was used to calculate its H[^]. (Put S_x=S_y=S_z=1/2; I_x=I_y=I_z=3.5 and g _n= 0.2267143).

Individual contributions from the four factors in the total value of H^{\wedge} for these six complexes were given in small brackets of horizontal row shown at the bottom (\rightarrow) of Tables: 1.1B, 1.2B).

(c) $\Delta E_{h f}$ values of these Zr (III) and Hf (III) complexes were calculated by [4] (Tables: 1.1 B, 1.2 B).

Sum of the orbital energies	= -197941.631
Total energy	= -347017.623
Kinetic energy	= 358774.656
Nuclear attraction energy	= -838025.633
Electron repulsion energy	= 143024.955
Exchange energy	= -10791.601

Table: 1.1. Energies (kJmole⁻¹) of Zr

Table: 1.1A . Optimization 1 arameters of Zi (11) Complexes					
	Point	Dipole	Total bonding	Total Energy: X c	
Complex	group	moment	energy	LDA(Exchange; Correlation)	
$[ZF_6]^{3-}$	D _{6h}	≅ 0.0	-3414.22	-441104.44	
				(-421336.89; -19767.55)	
$[ZBr_6]^{3-}$	D _{6h}	≅ 0.0	-3761.98	-1691021.63	
				(1631273.45; -59748.19)	

Table: 1.1A .Optimization Parameters of Zr (III) Complexes

Complex	g values / [g _{iso}]	a values/[A ten]*	Q [ŋ]	
	(g contribution)	(a contribution)	(Q contribution)	(I)
$[ZrF_6]^{3-}$	11 2.001331	11 1482.194	-127.753(0.000)	
D _{6h}	⊥ 1.967097	± 1427.985		
	⊥ 1.967089	⊥ 1427.983		
	[1.978506]	[1446.060]		(-0.00099
$(2) \rightarrow$	$(1.400H_{ll}+2.753H_{\perp})$	(5422.273)	(53.23)	4H ₀)
$[\operatorname{Zr}\operatorname{Br}_6]^{3}$	11 1.967507	11 -8.701	-25.798(0.000)	
D_{6h}	$\perp 1.875079$	⊥ -17.344		
	$\perp 1.875038$	⊥-17.401		
	[1.905875]	[_14.482]		
$(2) \rightarrow$	$(1.38H_{11}+2.624H\perp)$	(-54.308)	(10.749)	(do)

* $\Delta E_{hf} \approx 0.5 A_{ten}$

Table: 1.2. Energies (kJmole⁻¹) of Hf

Sum of the orbital energies	= -894267.484
Total energy	= -1456491.418
Kinetic energy	= 1629769.308
Nuclear attraction energy	= -3628668.687
Electron repulsion energy	= 572131.931
Exchange energy	= -29723.970

Table: 1.2 A. Optimization Parameters of Hf (III) Complexes

		-		· · · -
	Point	Dipole	Total bonding	Total Energy:X c
Complex	group	moment	energy	LDA(Exchange; Correlation)
$[HfF_{6}]^{3-}$	D _{6h}	≅ 0.0	-48304.19	-943484.89
				(-913888.11; -29596.78)
$[HfCl_6]^{3-}$	O _h	3.8	-48035.78	-1213450.90
				(-1172999.12; -40451.78)
$[HfBr_6]^{3-}$	O _h	≅ 0.0	-49460.95	-2193402.23
				(-2123824.82; -69577.42)
$[Hf(NH_3)_6]^{3+}$	D ₆	≅ 0.0	-52045.43	-899668.85
				(-871139.00; -28529.85)

Complex	g values / [g iso]	a values/[A ten]*	Q (ŋ)	
1	(g contribution)	(a contribution)	(Q contribution)	(I)
$[\text{Hf F}_6]^{3-}$	11 1.998439	11 4552.955	5690.54(0.000)	
D _{6h}	$\perp 1.906947$	± 4425.702		
	$\perp 1.906947$	± 4425.702		
	[1.935841]	[4468.120]		(0.00061
$(2) \rightarrow$	$(1.398H_{11}+2.669H_{\perp})$	((23457.63)	(-9958.445)	H ₀)
$[\mathrm{Hf}\mathrm{Cl}_6]^{3-}\mathrm{O}_\mathrm{h}$	[1.638886]	[-1004.72]	-1331.25(0.000)	
$(3) \rightarrow$	(1.147 H ₀)	(-1758.260)	(-16307.813)	(do)
$[\mathrm{Hf}\mathrm{Br}_6]^{3-}\mathrm{O}_{\mathrm{h}}$	[1.687085]	[-884.28]	-1235.518(0.00)	
$(3) \rightarrow$	$(1.180 H_0)$	(-1547.494)	(-15135.096)	(do)
$[Hf(NH_3)_6]^{3+}$	11 1.980544	11 7001.279	-7078.38(0.035)	
D_6	⊥ 1.919257	⊥6758.151		
	⊥ 1.919230	⊥6758.153		
	[1.939677]	[6839.19]		
$(2) \rightarrow$	$(1.385 H_{ll+} 2.681 H_{\perp})$	(35905.748)	(12387.165)	(do)
**	~ 0 5 1			

 Table: 1.2 B. Calculation of Contributions from g, A, Q &I Factors in (H^)

* $\Delta E_{hf} \approx 0.5 A_{ten}$

[11] Calculation of H^ for Nb (IV) and Ta (IV) complexes:

- (a) The complexes of Nb (IV) were categorized as follows (Table: 1.3 B):
 - (i) $[NbX_6]^{2-} (X = F, Cl)$ and $[Nb(NH_3)_6]^{4+}$ were of axial symmetry with (a) two of the three **g** being the same called **g**₁ and the third with higher value was called **g**₁. (b)Two of three **a** called **a**₁ being the same and the third of higher value was called **a**₁₁. (c) Two of the three **q** values were of the same magnitude. (d) **n** = 0. Relation [2] was applied to calculate their H^.
 - (ii) [Nb (NCS) ₆]²⁻ had different values of both **g** and **a** respectively. Relation [1] was applied to calculate its H^. (Put S_x=S_y=S_z=1/2; I_x=I_y=I_z= 4.5 and g_n= 1.3712222).
- (b) The Ta (IV) complexes were categorized as follows (Table: 1.4 B):
 - (i) $[\text{Ta } \text{Cl}_6]^{2}$ had an axial symmetry with (a) two of the three **g** called \mathbf{g}_{\perp} being of same value and the third of higher value was called \mathbf{g}_{\parallel} . (b) Two of the three **a** called \mathbf{a}_{\perp} being of the same value and the third of higher value was called \mathbf{a}_{11} . (c) Two of the three **q** were of same value. (d) $\eta=0$. Relation [2] was used to calculate H[^].
 - (ii) [Ta Br₆]²⁻ possessed almost same values of g and a. Relation [3] was applied to calculate its H[^].
 (Put S_x=S_y=S_z=1/2; I_x=I_y=I_z=3.5 and g_n= 0.6772857).

Individual contributions from four factors in the total value of H^{\wedge} for these six complexes were given in small brackets of horizontal row shown at the bottom (\rightarrow) of Tables: 1.3 B, 1.4B).

(c) ΔE_{hf} for these Nb (IV) and Ta(IV) complexes was calculated by [4] (Tables: 1.3 B, 1.4 B).

Table: 1.3. Energies (kJmole⁻¹) of Nb

Sum of the orbital energies	= -220524.584
Total energy	= -368353.927
Kinetic energy	= 381463.682
Nuclear attraction energy	= -890145.400
Electron repulsion energy	= 151580.134
Exchange energy	= -11252.343

rubici fioriti optimization i arameters of rub (rv) complexes				
	Point	Dipole	Total bonding	Total Energy:X c
Complex	Group	moment	energy	LDA(Exchange; Correlation)
$[NbF_6]^{2-}$	D _{3d}	≅ 0.0	-4368.10	-453354.94
				(-433286.88; -20068.06)
$[NbCl_6]^{2-}$	D _{3h}	≅ 0.0	-3852.22	-723320.86
				(-692397.80; -30923.06)
$[Nb(NCS)_6]^{2-}$	C ₂	2.56	36992.39	-854927.44;
				(-812445.73; -42481.71)
$[Nb(NH_3)_6]^{4+}$	D ₁₂	≅ 0.0	-8540.86	-409541.28
				(-390539.96; -19001.32)

Table: 1.3A. Optimization Parameters of Nb (IV) Complexes

Table: 1.3B.	Calculation of	Contributions	from g. A. C) & I Factors in (H^)
I ubici Iiobi	Culculation of	contributions	11 0 m 5, 1 m, V	

	g values / [g _{iso}]	a values/[A ten]*	Q (ŋ)	
Complex	(g contribution)	(a contribution)	(Q contribution)	(I)
$[NbF_6]^{2-}$	11 1.997058	11 1687.779	- 248.99(0.023)	
D _{3d}	⊥ 1.910581	⊥1514.006		
	⊥ 1.910545	⊥1513.832		
	[1.939395]	[1571.872]		(0.00470
$(2) \rightarrow$	$(1.397H_{11}+2.674H_{\perp})$	(10610.136)	(933.713)	32H ₀)
$[NbCl_6]^{2}$	11 1.994610	11 110.823	201.541 (0.017)	
D_{3h}	⊥ 1.952732	⊥ -152.487		
	⊥ 1.952710	⊥-151.959		
	[1.966684]	[-64.541]		
$(2) \rightarrow$	$(1.396H_{11}+2.733H_{\perp})$	(-435.652)	(-755.779)	(do)
Nb $(NCS)_{6}]^{2-}$	zz 2.021949	zz -411.361	-38.546 (0.825)	
C ₂	yy 2.012788	yy -402.903		
	xx 1.962290	xx -182.463		
	[1.99901]	[-332.242]		
$(1) \rightarrow$	$(1.373H_x+1.416H_y)$	(-2242.635)	(144.548)	(do)
	+1.415 H _z)			
$[Nb(NH_3)_6]^{4+}$	11 1.981543	11 560.082	334.684 (0.013)	
D ₁₂	$\perp 1.848149$	± 262.279		
	$\perp 1.845451$	± 261.709		
	[1.891714]	[361.357]		
$(2) \rightarrow$	$(1.387H_{ll}+2.584H_{\perp})$	(2439.160)	(-1255.065)	(do)

* $\Delta E_{hf} \approx 0.5 A_{ten}$

Table: 1.4. Energies (kJmole⁻¹) of Ta

= -926215.546
= -1507460.507
= 1692808.00
= -3761202.892
= 591400.512
= -39466.957

Table: 1.4 A.	Optimization Pa	rameters of Ta	(IV)	Complexes
----------------------	------------------------	----------------	---------------	-----------

Complex	Point	Dipole	Total bonding	Total Energy :X c
	group	moment	energy	LDA(Exchange; Correlation)
$[TaCl_6]^{2}$	D _{3h}	≅ 0.0	-52811.48	1233202.82
				(-1192430.57;-40772.25)
$[TaBr_6]^{2-}$	O _h	≅ 0.0	-54446.40	-2213154.01
				(-2143256.15; -69897.86)

	g values / [g _{iso}]	a values/[A ten]*	Q (η)	
Complex	(g contribution)	(a contribution)	(Q contribution)	(I)
$[TaCl_6]^{2-}$	11 1.949731	11 1648.699	- 4510.8 (0.000)	
D _{3h}	$\perp 1.864718$	± 1108.296		
	⊥ 1.863443	$\perp 1106.086$		
	[1.682027]	[1287.694]		(0.0018
$(2) \rightarrow$	$(1.364 \text{ H}_{11}+2.609 \text{H}_{\perp})$	(6760.394)	(7893.90)	$07H_0$)
$\left[\operatorname{Ta}\operatorname{Br}_{6}\right]^{2-}\operatorname{O}_{\mathrm{h}}$	[1.69233]	[-1031.594]	-1304.9 (0.000)	
(3)→	(1.184 H ₀)	(-1805.290)	(-15985.025)	(do)

* $\Delta E_{hf} \approx 0.5 A_{ten}$

[1II] Calculation of H^ for Mo (III) and W (III) complexes:

- (a) All the six Mo (III) complexes (Table: 1.5 B) such as $[MoX_6]^{3-}$ (X=F, Cl, Br, CNS) as well as $[Mo(OH_2)_6]^{3+}$ and $[Mo(NH_3)_6]^{3+}$ had nearly the same values of **a** and **g** parameters. Relation [3] was applied to calculate their H^. (Put S_x=S_y=S_z=3/2; I_x=I_y=I_z=2.5 and g_n=-0.3656800).
- (b) All the five W (III) complexes (Table: 1.6 B) like $[W X_6]^{3-} (X=F, Cl, Br)$ as well as $[W (OH_2)_6]^{3+}$ and $[W (NH_3)_6]^{3+}$ possessed nearly the same values of **g** and **a** parameters. Relation [3] was applied to calculate H^ for all these complexes. (Put S_x=S_y=S_z=3/2; I_x=I_y=I_z=0.5 and g _n= 0.2355696).

Values of individual contributions from the four factors in the total value of (H^{\wedge}) for these eleven complexes were given in small brackets of a horizontal row shown at the bottom of each complex (\rightarrow) of Tables: 1. 5 B and 1.6B.

With I=0.5, there is no NQCC for W (III) complexes. Therefore, only three factors would contribute in the total value of H^{\wedge} in its complexes.

(c) ΔE_{hf} for these Mo (III) and W (III) complexes was calculated by [4] (Tables: 1.5 B, 1.6 B).

Table: 1.5. Energies (kJmole⁻¹) of Mo

Sum of the orbital energies	= -234162.483
Total energy	= -390455.742
Kinetic energy	= 405041.503
Nuclear attraction energy	= -943980.382
Electron repulsion energy	= 160198.325
Exchange energy	= -11715.198

Complex	Point	Dipole	Total bonding	Total Energy:X c		
	group	moment	energy	LDA(Exchange; Correlation)		
$[MoF_6]^{3-}$	O_h	≅ 0.0	-3908.97	-465710.47		
				(-445350.56; -20359.91)		
$[MoCl_6]^{3-}$	O_h	≅ 0.0	-3381.79	-735677.36		
				(-704462.36; -31214.99)		
$[MoBr_6]^{3-}$	O_h	≅ 0.0	-4874.10	-1715628.34		
				(-1655287.70; -60340.64)		
$[Mo(NCS)_6]^{3-}$	O_h	≅ 0.0	-14164.86	-867278.62		
				(-824505.12; -42773.49)		
$[Mo(OH_2)_6]^{3+}$	C ₁	4.32	-6867.18	-443834.69		
				(-423738.42; -20096.28)		
$[Mo(NH_3)_6]^{3+}$	C _{3i}	≅ 0.0	-10727.45	-421899.98		
				(-402606.51; -19293.48)		

Table: 1.5A. Optimization Parameters of Mo (III) Complexes

Table: 1.5B. Calculation of Contributions from g, A, Q & I Factors in (H^)

			=	
Complex	$[g_{iso}]$	[A ten]*	Q (η)	
$(4d^3)$	(g contribution)	(a contribution)	(Q contribution)	(I)
$[MoF_6]^3 O_h$	[1.958172]	[-234.754]	- 0.00879 (0.035)	
$(3) \rightarrow$	$(4.110H_0)$	(-880.328)	(-0.054953)	(-0.0006
				968H ₀)
$[MoCl_6]^{3-}O_h$	[1.984449]	[-186.562]	- 0.00669 (0.035)	
$(3) \rightarrow$	(4.166 H ₀)	(-699.608)	(-0.0418)	(do)
$[MoBr_6]^{3-}O_h$	[2.014495]	[-160.375]	- 0.007195(0.019)	
$(3) \rightarrow$	(4.229 H ₀)	(-601.406)	(-0.044968)	(do)
$Mo(NCS)_6]^{3-}O_h$	[1.977407]	[-153.418]	- 0.0089 (0.027)	
$(3) \rightarrow$	$(4.151H_0)$	(-575.418)	(-055625)	(do)
$[Mo(OH_2)_6]^{3+} C_1$	[1.976455]	[-205.089]	-0.954543 (0.506)	
$(3) \rightarrow$	(4.149 H0)	(-769.084)	(-5.965893)	(do)
$[Mo(NH_3)_6]^{3+}C_{3i}$	[1.990714]	[-177.267]	0.72235 (0.016)	
(3)→	(4.178H0)	(-664.751)	(4.514688)	(do)

^{*} $\Delta E_{\rm hf} \approx 0.5 A_{\rm ten}$

Table: 1.6. Energies (kJmole⁻¹) of W

Sum of the orbital energies	= -958924.160
Total energy	= -1559565.445
Kinetic energy	= 1757712.950
Nuclear attraction energy	= -3897107.487
Electron repulsion energy	= 611047.391
Exchange energy	= -31218.299

	Tuster II of it optimization I arameters of ((III) completes				
	Point	Dipole	Total bonding	Total Energy :X c	
Complex	group	moment	energy	LDA(Exchange; Correlation)	
$[WF_6]^{3-}$	O _h	≅ 0.0	-57415.49	-983187.91	
				(952948.41; -30239.51)	
$[WCl_6]^{3-}$	O _h	≅ 0.0	-56925.77	-1253156.05	
				(-1212061.43; -41094.63)	
$[WBr_6]^{3-}$	O _h	≅ 0.0	-58417.00	-2233106.71	
				(-2162886.44; -70220.27)	
$[W(OH_2)_6]^{3+}$	C ₁	4.06	-60416.03	-961312.39	
				(-931336.49; -29975.90)	
$[W(NH_3)_6]^{3+}$	C ₁	0.02	-64302.58	-939377.26	
				(-910204.24; -29173.02)	

Table: 1. 6A. Optimization Parameters of W (III) Complexes

 Table: 1. 6B. Calculation of Contributions from g, A, Q & I Factors in (H^)

Complex	[g _{iso}]	[A ten]*	Q (η)**	
$(5d^3)$	(g contribution)	(a contribution)	(Q contribution)	(I)
$\left[\mathrm{WF}_{6}\right]^{3}$ O_{h}	[1.80193]	[-16.410]		
$(3) \rightarrow$	$(3.783H_0)$	(-12.308)	()	(0.000089
				8 H ₀)
$[WCl_6]^{3-}$ O_h	[1.868252]	[- 153.522]		
$(3) \rightarrow$	(3.922 H ₀)	(-115.142)	()	(do)
$[WBr_6]^{3-}$ O _h	[1.893263]	[-128.087]		
$(3) \rightarrow$	(3.974 H ₀)	(-96.065)	()	(do)
$[W(OH_2)_6]^{3+}C_1$	[1.859795]	[-113.25]		
$(3) \rightarrow$	(3.903 H ₀)	(-84.938)	()	(do)
$[W(NH_3)_6]^{3+}$ C ₁	[1.925022]	[-141.875]		
$(3) \rightarrow$	(4.041H0)	(-106.406)	()	(do)

* $\Delta E_{hf} \approx 0.5 A_{ten}$

** With I=1/2, W (III) complexes do not possess NQCC and η . So **Q** does not contribute.

[IV] Calculation of H^ for Tc (II) and Re (II) complexes

(a) The Tc (II) complexes were categorized as follows (Table: 1.7 B):

(i) $[TcX_6]^4$ (X=Cl, Br) were of axial symmetry with (a) two of the three **g** called \mathbf{g}_{\perp} to be of the same value and the third having higher value was called \mathbf{g}_{\parallel} . (b) Two of the three **a** called \mathbf{a}_{\perp} being the same and the third of higher value was called \mathbf{a}_{11} . (c) Two of the three **q** values were same.(d) $\eta=0$. Relation [2] was applied to calculate their H[^].

(ii) [Tc (NCS) $_{6}$]⁴⁻possessed quite different values of **g** and **a**. Relation [1] was applied to calculate its H[^].

(iii) $[Tc (NH_3)_6]^{2+}$ looked like having axial symmetry as it obeyed three of the four conditions of axial symmetry like (a) two of the three **g** called \mathbf{g}_{\perp} were of the same value and the third having higher value was called \mathbf{g}_{\parallel} . (b) Two of the three **a** called \mathbf{a}_{\perp} being of same value and the third with higher value was called \mathbf{a}_{11} . (c) Two of the three **q** values were the same. But it does not obey the fourth condition because here $\eta \neq 0$.

So Relation [1] rather than [2] is applied to calculate their H^{Λ}. (Put S_x=S_y=S_z=1/2; I_x=I_y=I_z=4.5 and g _n= 1.2632667).

(b) The Re (II) complexes were categorized as follows (Table: 1.8 B):
(i) [Re X₆]⁴⁻ (X= Cl, Br) had nearly the same values of g and a respectively. Relation [3] was applied to calculate H[^].
(ii) [Re (NH₃)₆]²⁺ had quite different values of g and a parameters respectively. Relation [1] was applied to calculate its H[^].
(Put S_x=S_y=S_z=1/2; I_x=I_y=I_z=2.5 and g n= 1.287880) Values of individual contributions from the four factors in the total value of H[^] for the seven complexes were given in small brackets of a horizontal row shown at the bottom of each complex (→) in Tables: 1.7 B and 1. 8B.

(c) $\Delta E_{h f}$ for these Tc(II) and Re(II) complexes was calculated by [4] (Tables: 1.7 B, 1.7 B).

Tables: 1.7. Energies	(kJmole ⁻) of Tc
Sum of the orbital energies	= -248217.224
Total energy	= -413330.603
Kinetic energy	= 429520.152
Nuclear attraction energy	= -999838.176
Electron repulsion energy	= 169176.367
Exchange energy	= -12188.956

Tables: 1.7. Energies (kJmole⁻¹) of Tc

Tables: 1.7 A.	Optimization	Parameters of	Tc (II)	Complexes
----------------	--------------	----------------------	---------	-----------

	Point	Dipole	Total bonding	Total Energy: X c
Complex	group	moment	energy	LDA(Exchange; Correlation)
$[\mathrm{TcCl}_6]^{4-}$	D _{6h}	≅ 0.0	-924.72	-747903.14
				(-716414.73; -31488.41)
$[\mathrm{TcBr}_6]^{4-}$	D _{6h}	≅ 0.0	-2517.74	-1727854.10
				(-1667240.04; -60614.06)
$[Tc (NCS)_6]^{4-}$	C_2	3.16	39373.95	-879499.38
				(-836453.19; -43046.19)
$[Tc (NH_3)_6]^{2+}$	D ₆	≅ 0.0	-9442.19	-434121.29
				(-414554.78; -19566.51)

Harminder Singh *et al* CALCULATING ESR PARAMETERS (H[^] ΔE h f) OF 4d AND 5d TRANSITION METAL ION COMPLEXES: A DFT STUDY

Complex	g values / [g _{iso}]	a values/[A ten]*	Q (η)	
•	(g contribution)	(a contribution)	(Q contribution)	(I)
$[\mathrm{TcCl}_6]^{4-}$	11 1.946701	11 15.429	110.57 (0.038)	
D_{6h}	⊥2.150365	⊥-19.205		
	$\perp 2.150460$	⊥ -19.205		
	[2.080509]	[-7.660]		(0.0043
$(2) \rightarrow$	$(1.362H_{ll}+3.009H_{\perp})$	(-51.705)	(-414.638)	33H ₀)
$[\mathrm{TcBr}_6]^{4-}$	11 2.009877	11 -2.128	124.18 (0.000)	
D _{6h}	$\perp 2.008253$	⊥ -21.852		
	⊥1.942244	⊥ -22.793		
	[1.986792]	[-15.591]		
$(2) \rightarrow$	$(1.406H_{ll}+2.764H_{\perp})$	(-105.239)	(-465.675)	(do)
$[Tc(NCS)_6]^{4-}$	zz 1.940612	zz -163.279	20.122 (0.291)	
C_2	yy 1.930780	yy -118.128		
	xx 1.929841	xx -145.567		
	[1.933744]	[-142.325]		
$(1) \rightarrow$	$(1.350H_x+1.351H_y)$	(-960.694)	(-75.476)	(do)
	+1.358Hz)			
$[Tc(NH_3)_6]^{2+}$	zz 5.103714	zz 957.834	22.659 (0.105)	
D_6	yy 1.904594	yy - 19.540		
	zx 1.898915	xx - 20.332		
	[2.968741]	[305.987]		
$(1) \rightarrow$	$(1.329H_x+1.333H_y)$	(2065.412)	(-84.971)	(do)
	+3.571 H _z)			

* $\Delta E_{hf} \approx 0.5 A_{ten}$

Tables: 1.8. Energies (kJmole⁻¹) of Re

Sum of the orbital energies	= -992453.637
Total energy	= -1612818.552
Kinetic energy	= 1824530.108
Nuclear attraction energy	= -4036394.783
Electron repulsion energy	= 631024.326
Exchange energy	= -31978.204

	Point	Dipole	Total bonding	Total Energy: X c
Complex	group	moment	energy	LDA(Exchange; Correlation)
$[\text{ReCl}_6]^{4-}$	O _h	≅ 0.0	-60993.79	-1273383.09
				(-1231963.38; -41419.71)
$[\text{ReBr}_6]^{4-}$	O _h	≅ 0.0	-62629.22	-2253333.71
				(-2182788.36; -70545.35)
$[\text{Re}(\text{NH}_3)_6]^{2+}$	D ₆	≅ 0.0	-70669.18	-959604.68
				(-930106.53; -29498.15)

		U,		
Complex	g values / [g _{iso}]	a values/[A ten]*	Q (η)	
	(g contribution)	(a contribution)	(Q contribution)	(I)
$[\text{ReCl}_6]^{4-}$ O _h	[2.346133]	[535.840]	313.030(0.000)	
$(3) \rightarrow$	$(1.642 H_0)$	(669.800)	(1956.437)	(0.0024
				5H ₀)
$[\text{ReBr}_6]^{4-}$ O _h	[2.39061]	[531.765]	299.987 (0.000)	
$(3) \rightarrow$	$(1.673H_0)$	(664.706)	(1874.919)	(do)
$[\text{Re}(\text{NH}_3)_6]^{2+}$	11 4.159017	11 1032.922	-1217.20(0.095)	
D_6	$\perp 0.586016$	⊥187.452		
	± 0.562867	⊥ 183.324		
	[1.76930]	[467.900]		
$(2) \rightarrow$	$(2.91H_{11}+0.804H_{\perp})$	(1754.625)	(507.167)	(do)
$*AE \sim 0$	5 4			

Tables: 1.8 B.	Calculation of Contributions from g,	A, Q & I Factors in (H [^])
----------------	--------------------------------------	---------------------------------------

* $\Delta E_{hf} \approx 0.5 A_{ten}$

[V] Calculation of H^ for Ru (III) and Os (III) complexes

(a) [RuX₆]³⁻ (X=F, Cl, Br) possessed same values of g and a respectively (Table: 1. 9 B).
 Relation [3] was applied to calculate their H^A. [Put S_x=S_y=S_z=1/2; I_x=I_y=I_z=2.5 and g n= -0.287520].

(b) The Os (III) complexes were categorized as follows (Table: 1.10 B):

(i) $[Os X_6]^{3-1}X=F$, Cl, Br) had nearly the same values of **g** and **a** parameters respectively. Relation [3] was applied to calculate their H[^].

(ii) $[Os (NH_3)_6]^{3+}$ looked like having axial symmetry as it obeyed three of the four conditions of axial symmetry such as (a) two of the three **g** called **g**_⊥ were of the same value and the third having higher value was called **g**_{||}. (b) Two of the three **a** called **a**_⊥ were of the same value and the third of higher value was called **a**₁₁. (c) Two of the three **q** values were of same magnitude. But it does not obey the fourth condition because here $\eta \neq 0$. Relation [1] rather than [2] was applied to calculate their H[^]. (Put S_x=S_y=S_z=1/2; I_x=I_y=I_z=1.5 and g_n= 0.4399553).

Values of individual contributions from four factors in the total value of H^{\wedge} in MHz for these 7 complexes were given in small brackets of a horizontal row shown at the bottom of each complex (\rightarrow) in Tables: 1.9 B and 1.10 B.

(c) ΔE_{hf} for the Ru (III) and Os (III) complexes was calculated by [4] (Tables: 1.9 B,1.10 B).

Tables: 1.9. Energies (kJmole⁻¹) of Ru

.)
= -262694.771
= -436990.048
= 454919.503
= -1057755.694
= 178519.845
= -12673.712

14		. Optimiza	don i arameters o	n Ru (III) Complexes
	Point	Dipole	Total bonding	Total Energy : X c
Complex	group	moment	energy	LDA(Exchange; Correlation)
$[\operatorname{Ru}F_6]^{3-}$	O _h	≅ 0.0	-3850.67	-491226.84
				(-470269.69; -20957.15)
$[\operatorname{RuCl}_6]^{3-}$	O _h	3.8	-3480.20	-761194.08
				(-729381.83; -31812.25)
$[RuBr_6]^{3-}$	O _h	≅ 0.0	-4986.66	-1741145.05
				(-1680207.15; -60937.90)

Tables: 1.9 A. Optimization Parameters of Ru (III) Complexes

Tables: 1.9 B	Calculation of Contributions from g, A, Q & I Factors in (H [^])
---------------	--

Complex	[g _{iso}]	[A ten]*	Q (η)	
	(g contribution)	(a contribution)	(Q contribution)	(I)
$[\operatorname{Ru}F_6]^{3-}$ O _h	[2.818343]	[600.682]	99.310 (0.000)	
$(3) \rightarrow$	$(1.972H_0)$	(750.853)	(620.688)	(-0.0005
				48H ₀)
$[\operatorname{RuCl}_6]^{3-} \operatorname{O}_h$	[2.853948]	[549.020]	85.869 (0.000)	
$(3) \rightarrow$	$(1.997H_0)$	(686.275)	(536.681)	(do)
$[\operatorname{RuBr}_6]^{3-} \operatorname{O}_h$	[2.742377]	[513.095]	71.409 (0.000)	
$(3) \rightarrow$	(1.919 H ₀)	(641.369)	(446.306)	(do)

* $\Delta E_{hf} \approx 0.5 A_{ten}$

Tables: 1.10. Energies (kJmole⁻¹) of Os

Sum of the orbital energies	= -1026749.174
Total energy	= -1667237.716
Kinetic energy	= 1893323.949
Nuclear attraction energy	= -4179218.245
Electron repulsion energy	= 651404.529
Exchange energy	= -32747.940

Complex	Point	Dipole	Total	Total Energy : X c	
	group	moment	bonding	LDA(Exchange; Correlation)	
			energy	*GGA[Exchange; Correlation]	
$[OsF_6]^{3-}$	O_h	≅ 0.0	-67946.11	-1023848.81	
				(-992956.76; -30892.06)	
$[OsCl_6]^{3-}$	D _{6h}	≅ 0.0	-66154.24	-1293817.36	
				(-1252070.08; -41747.27)	
$[OsBr_6]^{3-}$	O _h	≅ 0.0	-69118.31	-2273767.29	
				(-2202894.46; -70872.83)	
$[Os(NH_3)_6]^{3+}$	D ₁₂	≅ 0.0	-75579.75	-1028260.38	
				(-956526.51; -30308.62)	
				[-53454.55; 12029.31]	

*GGA (Exchange; Correlation) Energies=0 for all except for [Os (NH₃)₆]³⁺

Complex	g values / [g _{iso}]	a values/[A ten]*	Q (η)	
complex	(g contribution)	(a contribution)	(Q contribution)	(I)
$\left[\mathrm{OsF}_{6}\right]^{3-}\mathrm{O}_{\mathrm{h}}$	[2.110344]	[668.950]	-12.186 (0.000)	
$(3) \rightarrow$	$(1.477H_0)$	(501.713)	(-27.419)	(0.0005
				03H ₀)
$[OsCl_6]^{3-} D_{6h}$	[2.008006]	[-80.930]	-511.51 (0.000)	
$(3) \rightarrow$	$(1.405 H_0)$	(-60.698)	(-1150.898)	(do)
$[OsBr_6]^{3-}O_h$	[2.170049]	[637.382]	91.790 (0.000)	
$(3) \rightarrow$	(1.518 H ₀)	(478.037)	(206.528)	(do)
$[Os(NH_3)_6]^{3+}$	zz 4.625234	zz 1738.769	-973.74 (0.298)	
D_{12}	yy0.900445	yy 394.253		
	xx0.853802	xx 392.480		
	[2.126494]	[841.834]		
$(1) \rightarrow$	(0.597H _x +0.630H _y	(1894.127)	(-243.435)	(do)
	+3.236H _z)			

* $\Delta E_{hf} \approx 0.5 A_{ten}$

[V1] Calculation of H[^] for Rh (IV) and Ir (IV) complexes

(a) The Rh (IV) complexes were categorized as follows (Table: 1.11 B):

(i) $[RhX_6]^{2-}$ (X=F, Cl, Br) had nearly the same values of **g** and **a** parameters respectively. Relation [3] was applied to calculate their H[^].

(ii) The complex $[Rh (NH_3)_6]^{4+}$ possessed different values of **g** and **a** parameters respectively. Relation [1] was applied to calculate H^A. (Put S_x=S_y=S_z=1/2; I_x=I_y=I_z=0.5 and g_n= -0.176800).

(b) The Ir (IV) complexes were categorized as follows (Table: 1.12 B):

(i) [Ir $X_6^{2^-}(X=F, Cl, Br)$ had nearly the same values of **g** and **a** parameters respectively. Relation [3] was applied to calculate their H[^].

(ii) $[Ir (NH_3)_6]^{4+}$ was of axial symmetry with (a) two of the three **g** called **g**_⊥ were the same and the third with higher value was called **g**_{||}. (b)Two of the three **a** parameters called **a**_⊥ being of the same value and the third of higher value was called **a**₁₁. (c) Two of the three **q** values were of the same value (d) $\eta \approx 0$ Relation [2] was applied to calculate their H^. (Put S_x=S_y=S_z=1/2; I_x=I_y=I_z=1.5 and g_n= 0.1091333).

Values of individual contributions from four factors in the total value of H^{\wedge} in MHz for these 8 complexes were given in small brackets of a horizontal row given at the bottom of each complex (\rightarrow) in Tables: 1.11 B and 1.12 B.

With I=0.5, there is no NQCC for Rh (IV) complexes. Therefore, only three factors would contribute in the total value of H^{h} in its complexes.

(c) ΔE_{hf} for these Rh(IV) and Ir(IV) complexes was calculated by [4] (Tables:1.11 B,1.12 B).

Tables: 1.11. Energies (kJmole⁻¹) of Rh

= -277600.622
= -461445.676
= 1893323.949
= -481259.711
= 188234.896
= -13169.545

	Point	Dipole	Total bonding	Total Energy :X c	
Complex	group	moment	energy	LDA(Exchange; Correlation)	
$[RhF_6]^{2-}$	O_h	≅ 0.0	-4613.31	-504390.16	
				(-483128.51; -21261.66)	
$[RhCl_6]^{2-}$	O _h	≅ 0.0	-4008.09	-774357.62	
				(-742240.85; -32116.78)	
$[RhBr_6]^{2}$	O _h	≅ 0.0	-5531.05	-1754338.01	
				(-1693090.56; -61247.45)	
$[Rh(NH_3)_6]^{4+}$	D ₆	≅ 0.0	-6799.75	-484539.94	
				(-441158.01; 8925.88)	
				[-32083.34; -20224.47]	

Tables: 1.11 B.	Calculation of	[°] Contributions from	n σ. Α. (Q & I Factors in (H^)
1 abits, 1,11 D.	Calculation of	Contributions not	п д, л, 🕻	

Complex	g values / [g _{iso}]	a values/[A ten]*	Q (η)**	
$(4d^{5})^{-}$	(g contribution)	(a contribution)	(Q contribution)	(I)
$[RhF_6]^{2-}$ O _h	[2.327833]	[532.790]		
$(3) \rightarrow$	$(1.629H_0)$	(133.198)	()	(-0.0000
				674H ₀)
$[RhCl_6]^{2-}O_h$	[2.233967]	[433.993]		
$(3) \rightarrow$	$(1.563H_0)$	(108.498)	()	(do)
$[RhBr_6]^{2-}O_h$	[2.1426]	[426.450]		
$(3) \rightarrow$	$(1.500 H_0)$	(106.613)	()	(do)
$[Rh (NH_3)_6]^{4+}$	zz 3.603577	zz 893.326		
D ₁₂	yy 1.762655	yy 202.919		
	xx1.548919	xx 52.820		
	[2.30505]	[383.022]		
$(1) \rightarrow$	$(1.084H_x+1.233H_y)$	(287.267)	()	(do)
	+2.521Hz)			

* $\Delta E_{hf} \approx 0.5 A_{ten}$

** With I=1/2, Rh (IV) complexes do not possess NQCC and η . So **Q** contribution is zero.

Tables: 1.12.Energies (kJmole⁻¹) of Ir

Sum of the orbital energies	= -1061815.440
Total energy	= -1722839.330
Kinetic energy	= 1964156.569
Nuclear attraction energy	= -4325667.832
Electron repulsion energy	= 672199.867
Exchange energy	= -33527.933

rustes: 112 11. optimization rutaneters of fr (17) complexes						
	Point	Dipole	Total bonding	Total Energy : X c		
Complex	group	moment	energy	LDA(Exchange; Correlation)		
$[IrF_6]^{2-}$	O _h	≅ 0.0	-74565.96	-1044541.55		
				(-1013320.57; -31220.97)		
$\left[\operatorname{IrCl}_{6}\right]^{2}$	O_h	≅ 0.0	-73959.80	-1314509.65		
				(-1272433.54; -42076.11)		
$[\mathrm{IrBr}_6]^{2}$	O _h	≅ 0.0	-75407.81	-2294460.05		
				(-2223258.31; -71201.74)		
$[Ir(NH_3)_6]^{4+}$	D ₁₂	≅ 0.0	-78865.09	-1000815.05		
				(-970654.01; -30161.04)		

Tables: 1.12 A. Optimization Parameters of Ir (IV) Complexes

Tables: 1.12 B. Calculation of Contributions from g, A, Q & I Factors in (H[^])

Complex	g values / [g _{iso}]	a values/[A ten]*	Q (η)	
$(5d^5)$	(g contribution)	(a contribution)	(Q contribution)	(I)
$[IrF_6]^{2-}O_h$	[1.960903]	[711.343]	-70.890 (0.002)	
$(3) \rightarrow$	$(1.372H_0)$	(533.507)	(-159.493)	(0.0001
				248H ₀)
$[IrCl_6]^{2-}O_h$	[1.938232]	[630.605]	51.220 (0.004)	
$(3) \rightarrow$	$(1.356H_0)$	(472.954)	(115.245)	(do)
$[IrBr_6]^{2-}O_h$	[1.92585]	[603.730]	43.560 (0.000)	
$(3) \rightarrow$	$(1.348H_0)$	(452.798)	(98.0)	(do)
$[Ir (NH_3)_6]^{4+}$	11 3.686342	11 1473.724	-688.45 (0.093)	
D ₁₂	$\perp 1.005770$	⊥735.630		
	$\perp 1.000407$	⊥732.682		
	[2.259355]	[980.680]		
$(2) \rightarrow$	$(2.579H_{11}+1.404H_{\perp})$	(2206.527)	(-172.113)	(do)

* $\Delta E_{hf} \approx 0.5 A_{ten}$

CONCLUSIONS

Effective Spin Hamiltonian (H^{\wedge}) and Hyperfine Coupling Energy (ΔE_{hf}) of a number of complexes of the 2nd and 3rd transition metal ions in their most common oxidation states have been successfully calculated. The values of all the four important factors which contribute to the total energy of ESR transitions of complexes were calculated accurately. The data generated is quite useful to the body of scientific knowledge.

ACKNOWLEDGEMENTS

Authors acknowledge the immense help received from the scholars whose articles are cited and included in references of this manuscript. The authors are also grateful to authors/ editors/ publishers of all those articles, journals and books from where the literature for this article has been reviewed and discussed. Authors are grateful to IJCRR editorial board members and IJCRR team of reviewers who have helped to bring quality to this manuscript. They are indebted to Mr. S.R. Heer, Chief Engineer (Retd.), North Zone, Doordarshan, New Delhi (India), for his invaluable cooperation in the installation and smooth working of the ADF software.

REFERENCES

1. Yang, SY. and Ziegler. T.T., Organometallics., 25 [4] (2006) 887-900.

- 2. Vrieze ,K. and Koten G. Van , Inorg. Chim. Acta., 100[1](1985) 79-96.
- Peter Oltmanns and Dieter Rehder, J. Org. Chem., 345[1-2] (1988) 87-96.
- Wong, EW., Walsby.CJ., Storr.T. and Leznoff DB., Inorg. Chem., 49 [7](2010)3343-50.
- 5. Meng- Sheng Liao and Steve Scheiner, Chem. Phys., 285 (2002)195-206.
- Autschbach, J., Zheng, S. and Schurko, R. W., "Analysis of Electric Field Gradient Tensors at Quadrupolar Nuclei in Common Structural Motifs," in "Concepts in Magnetic Resonance" Part A, 36A ; 84–126 (2010).
- Patchkovskii, S. and Ziegler, T., J. Amer. Chem. Soc., 122 [14] (2000) 3506–16.
- Arjan T. Termaten , Marius Schakel, Andreas Ehlers, W., Martin Lutz Anthony, Spek ,L. and Lammertsma Koop, Chem. Eur .J., 9(2003)3577-82.
- William E. Geiger, Organometallics., 30[1] (2011) 28-31.
- Florian Pevny, Emmanuel Di Piazza, Lucie Norel, Malte Drescher, Rainer F. Winter and Stephane Rigaut, Organometallics,29 [22](2010) 5912-18.
- Konrad Kowalski, Michael Linseis Rainer, Winter. F., Manfred Zabel, Stanislav Zalis, Harald Kelm, Hans-Jorg Kroger, Biprajit Sarkar and Wolfgang Kaim ,Organometallics, [14](2009) 4196-4209
- Nicolas Gauthier, Noureddine Tchouar, Frederic Justaud, Gilles Argouarch, Marie P. Cifuentes, Loic Toupet, Daniel Touchard, Jean-Fran^cois Halet, Stephane Rigaut, Mark G. Humphrey, Karine Costuas and Frederic Paul ,Organometallics, 28[7](2009)2253-66.
- 13. Seuret ,P., Cicoira, F., Ohta T. P., Doppelt Hoffmann,P., Weber, J. and Wesolowski , T.A. , Phys. Chem., 5 (2003) 268–74.
- Kozlova ,S. G., Gabuda ,S. P., Brylev, K. A., Mironov ,Yu. V. and Fedorov, V.E., J. Phys.Chem., 108[47] (2004) 10565–67.

- 15. Jorge S.Gancheff and Pablo A. Denis, Phys. Chem. A.,115 [2](2011) 211-18.
- Takashi Yoshimura, Takuya Ikai, Tsutomu Takayama, Tsutomu Sekine, Yasushi Kino and Atsushi Shinohara, Inorg. Chem., 49[13] (2010) 5876-88.
- 17. Mac-Leod Careyet, D. etal , Polyhedron , 29 [3] (2010) 1137-43.
- 18. David Jorge, Patricio Fuentealba and Albeiro Restrepo, Chem. Phys.Lett., 457(2008)42.
- Joanna James, Dilano K. Saldin, Zheng, T., Tysoe, W.T. and David, S. Sholl, Catalysis Today, 105(2005) 74-77.
- Karl K. Irikura and William, A.Goddard III, J. Amer. Chem. Soc.,116 (1994) 8733–40.
- 21. Special Issue in Memory of Edward I. Stiefel , J.Inorg.Biochem.,101 (2007)1594-1600.
- 22. Fornando Mendizabal and Claudo Oleo-AZar, Int.J.Quantum.Chem., 7[2](2002) 89-100.
- 23. Alexander C,Saladino and Sasah C.Larsen, Catalysis Today,105[1](2005)122-33.
- 24. Michael Buhl,Christoph Reimann, Dimitrios A.Pantazis,Thomas Bredow and Frank Neese,J.Chem.Theory 4[9](2008)1449-59.
- 25. Alessandro Bencini,Claude A.Daul,Andrea Dei,Fabio Mariotti,Hyoyoung Lee David, Shultz,A. and Lorenzo Sorace,Inorg.Chem.,40[7](2001)1582-90.
- 26. Serge,I.,GorelskyLipika Basumallick,JoshVura-Wies,Ritimukta Sarangi,Keith O. Hodgson, Britt Hedman ,Kiyoshi Fujisawa and Edward,I.Solomon,Inorg,Chem.,44[14](200 5) 4947-60.
- 27. Alexander C,Saladino and Sasah C.Larsen, J.Phys.Chem.A,107[11](2003)1872-78.
- 28. Market,L.Munzarova and Mattin kaupp,J.Phys.Chem.B,105[50](2001)12644.
- 29. Dimitrios A.Pantazis, Xian-Yang Chen,Clark R.Landis and Frank Neese, J.Chem.Theory Comput.,4[6](2008)908-19.

- 30. Atanasov, M, and Daul, C.A., Comptes. Rendus. Chimie, 8(2005)1421-33.
- 31. Atanasov, M. and Daul, C.A., Chimia ., 59(2005)504-10.
- 32. Silichter, C.P., "Principals of Magnetic Resonance," Sec.6.3(1963) Harper and Row, N.Y.
- 33. Kaupp, M., Buhl ,M.and Malkin , V.G., "Calculation of NMR and EPR Parameters-Theory and Applications," (2004) Ed. Wieley -VCH, Weimheim.
- 34. Ashbrook , S. E and Buhl, M. (Guest Editors), "Quantum- Chemical Computations of Magnetic Resonance Parameters". Magn. Reson. Chem., 48, Issue S1, p. 175.
- 35. Golding, R. M., "Applied Wave Mechanics," Van Nostrand, N.Y. (1969).
- Mcgravey, B.R., "Electron Spin Resonance of Transition Metal Complexes" in "Transition MetalChemistry,"Vol.3, p.89-201(1969) Ed. R.L. Carlin, Marcel Dekker, N.Y
- 37. Foner, S. and Low, W., Phys. Rev., 120(1960)1585.
- Pedersen, E. and Toftlund, H., Inorg. Chem., 13 (1974) 1603.
- 39. Borcherts , R.H. and Kikuchi, C., J. Chem. Phys., 40 (1964)2270-75
- 40. Jorgensen, C.K., Acta. Chem. Scand., 8(1957)1686.
- 41. Kenedy, F.S. et al., Biochem. Biophys. Res. Comm., 48 (1972) 1533-39

- 42. Urbach, F., J. Amer. Chem. Soc., 98 (1976) 5144.
- 43. Mcgarvey, B. R., Can. J. Chem., 53(1975) 2498.
- 44. Malatesta, V. and Mcgravey, B. R. Can .J .Chem.,53(1975) 3791.
- 45. Reuvani , A., Malatesta ,V. and Mcgarvey ,B.R., Can. J.Chem.,55 (1977) 70 .
- 46. Hastey, E., Colburn T.J. and Hendrickon, D.N., Inorg. Chem., 12(1973) 2414.
- Lewis, W.B. and Morgan, L.O., "Transition Metal Chemistry," Vol.4, p. 33(1968) Ed. Carlin, R.L., Marcel Dekker, N.Y.
- 48. Soo, H. and Belford, R.L., J. Amer. Chem. Soc., 91(1969) 2392.
- 49. Belford, R. L., Huang, D.T. and So, H., Chem. Phys. Lett., 14 (1972) 592.
- 50. van.Lanthe, E.,vander Aroird and Wormer, P.E.S., J.Chem.Phys., 107(1997)2488-98.
- 51. van.Lanthe, E., vander Aroird and Wormer, P.E.S., J.Chem.Phys., 108(1998)783-96.
- 52. van. Lanthe, E. and Baerends, J., J.Chem. Phys., 108 (2000) 8279-92.
- 53. Baerends, E. J., Branchadel, V. and Sodupe, M., Chem.Phys.Lett.,265(1997)481.
- 54. Lipkowitz, K. B. and Boyd, D. B., "Kohn-Sham Density Functional Theory: Predicting and Understanding Chemistry" in Rev. Comput. Chem., p.1-86, Vol.15 (2000) Wiley-VCH, N.Y.