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ABSTRACT 

A graph G is Hamiltonian if it has a spanning cycle. The problem of determining if a graph is 

Hamiltonian is well known to be NP-complete. While there are several necessary conditions for 

Hamiltonicity, the search continues for sufficient conditions. In their paper, ―On Smallest Non-

Hamiltonian Regular Tough Graphs‖ (Congressus Numerantium 70), Bauer, Broersma, and Veldman 

stated, without a formal proof, that all 4-regular, 2-connected, 1-tough graphs on fewer than 18 nodes 

are Hamiltonian. They also demonstrated that this result is best possible. 

Following a brief survey of some sufficient conditions for Hamiltonicity, Bauer, Broersma, and 

Veldman‗s result is demonstrated to be true for graphs on fewer than 16 nodes. Possible approaches for 

the proof of the n=16 and n=17 cases also will be discussed. 

Keywords: Hamiltonian 

 
INTRODUCTION 

In this paper, we will investigate the conjecture 

that every 2-connected, 4-regular, 1-tough graph 

on fewer than 18 nodes is Hamiltonian. First, we 

investigate the historical development of 

sufficient conditions for Hamiltonicity as they 

relate to the notions of regularity, connectivity, 

and toughness.   

A graph G consists of a finite nonempty set V = 

V(G) of n points called nodes, together with a 

prescribed set X of e unordered pairs of distinct 

nodes of V.  Each pair x = {u,v} of nodes in X is 

an edge of G, and x is said to join u to v.  We 

write x = uv or x = vu and say that u and v are 

adjacent nodes, and x is incident on u and v.  The 

order of a graph G is the number of nodes in 

V(G).  In our discussion, we will deal only with 

simple graphs, i.e., a graph with no loops or 

multiple edges. 

The degree of a node v, in a graph G, is denoted 

deg (v), and is defined to be the number of edges 

incident with v.  Closely related to the concept of 

degree is that of the neighborhood.  The 

neighborhood of a node u is the set N(u) 

consisting of all nodes v which are adjacent to u.  

In simple graphs, deg (u) = N(u). The 

minimum degree of a graph G is denoted by 

and the maximum degree is denoted by .  If 

r for any graph G, we say G is a regular 

graph of degree r, or simply, G is an r-regular 

graph, i.e. all nodes have degree r.  Figure 1.1 

contains a 4-regular graph with V(G) = 16. 

 

 

 

 

 

 

 

 

Figure 1.1 

 

We define a walk to be an alternating sequence of 

nodes and edges, beginning and ending with 
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nodes, in which each edge is incident on the two 

nodes immediately preceding and following it.  A 

walk is called a trail if all the edges are distinct, 

and a path if all the nodes are distinct.  A path is 

called a cycle if it begins and ends with the same 

node.  A spanning cycle is a cycle that contains 

all the nodes in V(G), and a graph is connected iff 

every pair of nodes is joined by a path.  

 

HAMILTONIAN CYCLES 

A graph is said to be Hamiltonian if it contains a 

spanning cycle.  The spanning cycle is called a 

Hamiltonian cycle of G, and G is said to be a 

Hamiltonian graph (the graph in Figure 1.1 is also 

a Hamiltonian graph).  A Hamiltonian path is a 

path that contains all the nodes in V(G) but does 

not return to the node in which it began.  No 

characterization of Hamiltonian graphs exists, yet 

there are many sufficient conditions.  

We begin our investigation of sufficient 

conditions for Hamiltonicity with two early 

results.  The first is due to Dirac, and the second 

is a result of Ore.  Both results consider this 

intuitive fact: the more edges a graph has, the 

more likely it is that a Hamiltonian cycle will 

exist.  Many sources on Hamiltonian theory treat 

Ore‘s Theorem as the main result that began 

much of the study of Hamiltonian graphs, and 

Dirac‘s result a corollary of that result. Dirac's 

result actually preceded it, however, and in 

keeping with the historical intent of this paper, 

we will begin with him. 

 

Theorem 1.1 (Dirac, 1952): If G is a graph of 

order n 3 such that  n/2, then G is 

Hamiltonian. 

 

 

 

 

 

 

 

Figure 1.2 

As an illustration of Dirac‘s Theorem, consider 

the wheel on six nodes, W6 (Figure 1.2).   In this 

graph, 
6

3
2

   , so it is Hamiltonian.  

Traversing the nodes in numerical order 1-6 and 

back to 1 yields a Hamiltonian cycle. 

 

Theorem 1.2 (Ore, 1960): If G is a graph of 

order n 3 such that for all distinct nonadjacent 

pairs of nodes u and v, deg (u) + deg (v)  n, then 

G is Hamiltonian. 

 

The wheel, W6, also satisfies Ore‘s Theorem.  

The sum of the degrees of nonadjacent nodes 

(i.e., deg(2) + deg (5), or deg(3) + deg (6), etc.) is 

always 6, which is the order of the graph. 

Before we discuss the results of Nash-Williams 

and Chvatal and Erdos, we must first define the 

notions of connectivity and independence.   

The connectivity (G) of a graph G is the 

minimum number of nodes whose removal 

results in a disconnected graph.  For k, we 

say that G is k-connected.  We will be concerned 

with 2-connected graphs, that is to say that the 

removal of fewer than 2 nodes will not 

disconnect the graph. For = k, we say that G is 

strictly k-connected.  For clarification purposes, 

consider the following.  Let G be any simple 

graph, =3.  Then G is 3-connected, 2-connected, 

and strictly 3-connected. 

A set of nodes in G is independent if no two of 

them are adjacent.  The largest number of nodes 

in such a set is called the independence number 

of G, and is denoted by .  The following result 

by Nash-Williams builds upon the two previous 

results by adding the condition that G be 2-

connected and using the notion of independence. 

 

Theorem 1.3 (Nash-Williams, 1971): Let G be a 

2-connected graph of order n with (G) 

max{(n+2)/3, }.  Then G is Hamiltonian. 
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Figure 1.3 

 

The graph in Figure 1.3 demonstrates the Nash-

Williams result.  In this 2-connected graph on six 

nodes, 3, 2,   and 
6 2

max ,2
3


 

  
 

, 

implying Hamiltonicity.  

In the same paper, Nash-Williams presents 

another very useful result.  Note that a cycle C is 

a dominating cycle in G if V(G – C) forms an 

independent set. 

 

Theorem 1.4 (Nash-Williams, 1971): Let G be a 

2-connected graph on n vertices with   (n+2)/3.  

Then every longest cycle is a dominating cycle. 

 

Another sufficient condition uses the notion of a 

forbidden subgraph, i.e., a graph that cannot be a 

subgraph of any graph under consideration.  A 

subgraph of a graph G is a graph having all of its 

nodes and edges in G.  The following result by 

Goodman and Hedetniemi introduces the 

connection between certain subgraphs and the 

existence of Hamiltonian cycles.  A bipartite 

graph G is a graph whose node set V can be 

partitioned into two subsets V1 and V2 such that 

every edge of G joins V1 with V2.  If G contains 

every possible edge joining V1 and V2, then G is 

a complete bipartite graph.  If V1 and V2 have m 

and n nodes, we write G = Km,n  (see Figure 1.4) 

 

 

 

 

Figure 1.4:  K1,3 and K2,3 (or K3,2) 

 

Goodman and Hedetniemi connected {K1,3, K1,3 + 

x}-free graphs and Hamiltonicity in 1974. A 

{K1,3, K1,3 + x}-free graph is a graph that does not 

contain a K1,3  or a K1,3 + x (see Figure 1.5 ) as an 

induced subgraph.  (i.e., the maximal subgraph of 

G with a given node set S of V(G).) 

 

 

 

Figure 1.5: K1,3 + x 

 

Theorem 1.5 (Goodman and Hedefniemi, 1974): 

If G is a 2-connected {K1,3, K1,3 + x}-free graph, 

then G is Hamiltonian. 

 

The wheel, W6, in Figure 1.2, is an example of a 

graph that is {K1,3, K1,3 + x}-free.  The subgraph 

formed by node 1 and any three consecutive 

nodes on the cycle is K1,3 plus 2 edges. 

A year after Nash-Williams‘s result, Chvatal and 

Erdos proved a sufficient condition linking the 

ideas of connectivity and independence. 

 

Theorem 1.6 (Chvatal and Erdos, 1972): Every 

graph G with n 3 and    has a Hamiltonian 

cycle. 

 

Chvatal and Erdos‘s result can be demonstrated 

by the graph in Figure 1.6.  In this graph, =2 and 



 

 

 

 

 

Figure 1.6 



Theorem 1.6 contains, as a special case, the 

following result: 

 

Theorem 1.7 (Haggkvist and Nicoghossian, 

1981): Let G be a 2-connected graph of order n 

with  (n+ /3.  Then G is Hamiltonian. 
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By requiring that G be 1-tough (which implies 2-

connectedness), Bauer and Schmeichel where 

able to lower the minimum degree condition 

found in Theorem 1.7.  Let  (G) denote the 

number of components of a graph G.  Then the 

toughness [20] of G, denoted by is defined as 

follows: 

( ), ( ) 1
( ) min .

( )X V G G X

X
G

G X


  

 
  

 

 

 

We say G is t-tough for t G).  It is important 

to note that all Hamiltonian graphs are 1-tough, 

but the converse is not true.  The Petersen Graph 

(see Figure 1.7) is a 1-tough, non-Hamiltonian 

graph. 

 

 

 

 

 

 

Figure 1.7: The Petersen Graph 

 

Theorem 1.8 (Bauer and Schmeichel, 1991): Let 

G be a 1-tough graph of order n with (G) 

(n+ - 2)/3.  Then G is Hamiltonian. 

 

Theorem 1.8 is best possible if  = 2 (see Figure 

1.8). 

 

 

 

 

 

 

 

 

 

Figure 1.8 

 

Figure 1.8 is comprised of 3 Kr, r 2, joined with 

a single node u.   In this case, G is a 2-connected, 

1-tough graph and  = r = (n+-3)/3 (i.e., 

(n+- 2)/3).  By relaxing the minimum 

degree requirements, we lose Hamiltonicity.  

 

Fan later introduced distance as a contributing 

factor for Hamiltonicity.  The distance, d(u,v), 

between two nodes u and v is the length of the 

shortest path joining them.  Theorem 1.9 builds 

upon Dirac‘s result by adding a distance 

condition. 

 

Theorem 1.9 (Fan, 1984): Let G be a 2-

connected graph of order n.  If for all nodes u,v 

with d(u,v) = 2 we have max {deg (u), deg (v)}  

n/2, then G is Hamiltonian. 

 

 

 

 

 

Figure 1.9 

 

In Figure1.9 above, nodes u and v have distance 

2. 

5
max{deg( ),deg( )} max{3,2}

2
u v   .  

Thus, G is Hamiltonian. 

 

We can consider Dirac‘s Theorem as a 

neighborhood condition on one node.  By 

requiring the connectivity to be 2, Fraudee, 

Gould, Jacobsen, and Schelp were able to 

consider the neighborhood union of 2 nodes. 

 

Theorem 1.10 (Fraudee, Gould, Jacobsen, 

Schelp, 1989): If G is a 2-connected graph such 

that for every pair of nonadjacent nodes u and v, 

  N (u ) N (v)  (2n-1) /3, 

then G is Hamiltonian. 

 

 

 

 

 

Figure 1.10 
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1

1

min deg( ) ,...,
k

k i k

i

v v v is an independent set of nodes


 
  

 


In Figure 1.10 above, 

2 1 11
( ) ( ) 4

3 3

n
N u N v


     

Similarly, every pair of nonadjacent nodes 

satisfies the conditions of Theorem 1.11and G is 

Hamiltonian. 

 

Fraisse further expanded the set of nonadjacent 

nodes by requiring a higher connectivity. 

 

Theorem 1.11 (Fraisse, 1986): Let G be a k-

connected graph of order n 3.  If there exists 

some t  k such that for every set S of t mutually 

nonadjacent nodes,  

N (S)  t (n-1) / (t+1), 

then G is Hamiltonian. 

 

 

 

 

 

 

Figure 1.11 

 

In Figure 1.11 above, k = 3.  Let t = 1.  Then, 

( 1) 5
( ) 3

( 1) 2

t n
N S

t


  


 

Thus, G is Hamiltonian. 

 

Closely related to neighborhood unions are 

degree sum conditions.  These often lead to less 

strict conditions since the degree sum counts 

certain nodes twice, unlike the neighborhood 

conditions.  For k  2, we define [3] 

 

 

 

 

To demonstrate this, consider the following graph 

(Figure 1.12). 

 

 

 

 

 

 

 
Figure 1.12 

 

Consider 2 using nodes c and d.  In this case, 

deg( ) deg( ) 8.c d   

Is this the minimum, however?  If we consider 

nodes a and b, then 

deg( ) deg( ) 6.a b   

We find that 6 is the minimum.  Thus,  

2 6  . 

 

 

 

 

Theorem 1.12 (Jung, 1978): Let G be a 1-tough 

graph of order n  11 with  

2 (G) n – 4.  Then G is Hamiltonian. 

 

 

 

 

 

 

 

 

 

 

Figure 1.13 

 

In Figure 1.13 above, 

2 8 4 8.n      

Thus, G is Hamiltonian. 

 

A year later Bigalke and Jung proved a result 

linking independence and minimum degree on 1-

tough graphs. 
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Theorem 1.13 (Bigalke and Jung, 1979): Let G 

be a 1-tough graph of order n 3 with  

max{n/3, -1}.  Then G is Hamiltonian. 

 

 

 

 

 

 

 

 

Figure 1.14 

 

Consider Figure 1.14 above.  This graph contains 

12 nodes, =5,and (G)=3.  Therefore,  

 

 

max , ( ) 1 max 4,2
3

5 max 4,2 .

n
G



 
  

 

 

 

Thus, G is Hamiltonian. 

 

 
HAMILTONICITY IN 4-REGULAR,  

1-TOUGH GRAPHS: 

Statement 

Bauer, Broersma, and Veldman in [1] consider 

the problem of finding the minimum order of a 

non-Hamiltonian, k-regular, 1-tough graph.  We 

will attempt to prove the following conjecture: 

 

Conjecture 2.1: Let G be a 1-tough, 2-connected, 

4-regular graph of order  17.  Then G is 

Hamiltonian. 

 

Define an (n, k)-graph to be a non-Hamiltonian, 

k-regular, 1-tough graph on n nodes.  By f(k) we 

denote the minimum value of n for which there 

exists an (n, k)-graph.  Conjecture 2.1 is best 

possible for n = 17, since there exists an (18, 4)-

graph (see Figure 2.1). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1:  An (18, 4)-graph 

 

Thus, we can restate Conjecture 2.1 as: 

 

Conjecture 2.1 (Bauer, Broersma, and Veldman, 

1990): f(k) = 18. 

 

Bauer, Broersma, and Veldman investigated this 

conjecture in [1].  They convinced themselves, 

through a lengthy distinction of classes, that the 

conjecture holds. No formal proof exists, 

however. 

In our attempt to prove this conjecture, we shall 

divide the graphs into subcases based on the 

number of nodes. 

Case 1: 5 n  8 

 

Note that the first simple class of graphs, which 

satisfies the conditions of the conjecture, is of 

order 5.  More specifically, G is K5.  Thus we 

must consider graphs where 5 n  8. 

Dirac‘s Theorem (Theorem 1.1) proves this case.  

Since G is 4-regular,  

 = 4.  Thus, if n  8, G is Hamiltonian. 

 

Case 2: 8 n  12 

Several results prove the existence of 

Hamiltonian cycles in this class of graphs.  The 

following three theorems prove the conjecture for 

graphs on exactly 9, exactly 12, and up to 9 

nodes, respectively.  

 

Theorem 2.2 (Nash-Williams, 1969): Let G be a 

k-regular graph on 2k + 1 nodes.  Then G is 

Hamiltonian. 
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Theorem 2.3 (Erdos and Hobbs, 1978): Let G be 

a 2-connected, k-regular graph on 2k + 4 nodes, 

where k 4.  Then G is Hamiltonian. 

 

Theorem 2.4 (Bollobas and Hobbs, 1978):  Let G 

be a 2-connected, k-regular graph on n nodes, 

where 9k/4 n.  Then G is Hamiltonian. 

 

Note that Theorem 2.2 and Theorem 2.3 solve 

our problem only for graphs on exactly 9 and 12 

nodes respectively.  Thus we need to consider 

graphs on 10 or 11 nodes.  In 1980, the most 

inclusive result appeared. Jackson‘s result 

satisfies our problem for graphs where n 12. 

 

Theorem 2.5 (Jackson, 1980): Let G be a 2-

connected, k-regular graph on at most 3k nodes.  

Then G is Hamiltonian. 

 

In our problem, all the graphs are 2-connected 

and 4-regular.  Thus 3(4) = 12 is the maximum 

number of nodes for which the result holds. 

  

Case 3: 12 n  15 

 

Case 3 of the conjecture is proven by a 1986 

result of Hilbig. 

 

Theorem 2.6 (Hilbig, 1986): Let G be a 2-

connected, k-regular graph on at most 3k+3 

nodes.  Then G satisfies one of the following 

properties: 

1) G is Hamiltonian; 

2) G is the Petersen graph, P (Figure 1.6); 

3) G is P—the graph obtained by replacing 

one node of P by a triangle. 

 

For our problem 3(4) + 3 = 15, so all graphs up to 

those on 15 nodes (1-tough, 4-regular, 2-

connected) are Hamiltonian by Hilbig‘s result. 

 

Case 4: n = 16, 17 

 

This leads us to the consideration of 4-regular, 1-

tough, 2-connected graphs on 16 and 17 nodes.  

We began our investigation of this case by 

generating graphs of this type and separating 

them into six cases.  For ease of notation, we 

define [v,k]-graphs to be all Hamiltonian, 1-

tough, 4-regular graphs on v nodes that are 

strictly k-connected.  Appendix A contains 

examples of graphs of each of the six types:  

[16,2], [16,3], [16,4], [17,2], [17,3], and [17,4]. 

We continued our investigation by examining the 

topology of the generated graphs.  Independence 

number, planarity, and toughness were all 

considered.  These results are enumerated in 

Appendix B. 

All planar [16,4] and [17,4]-graphs are 

Hamiltonian by the following result of Tutte. 

 

Theorem 2.7 (Tutte, 1956): Every 4-connected 

planar graph has a Hamiltonian cycle. 

 

Consider the following graphs: 

Figure 2.2:  A [16,4]-graph and a [17,4]-graph 

 

 

 

 

 

 

 

 

 

 

Both these graphs are 4-connected (by definition, 

also 2-connected), 1-tough, and 4-regular.  By 

Tutte‘s Theorem, they are also Hamiltonian. 

The following two observations could lead to a 

constructive method of proof of Conjecture 2.1. 

 

Observation 1: It is interesting to note that the 

presence of a K4 subgraph in G prevents planarity 

in 4-regular graphs.  See Figure 2.3. 
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Figure 2.3 

 

Observation 2: There is a minimum size of the 

components obtained by the removal of a -set in 

a [16,2]-graph. 

 

Proposition 2.8: Let G be a [16,2]-graph.  Then 

  a -set of order 2 whose removal leaves all 

components of G of at least order 5. 

 

Proof:  By the regularity of G, the minimum 

order of a component must be 3, so let the 

smallest component be a K3, since the removal of 

one edge makes the component easier to 

disconnect. 

This gives rise to 2 cases: 

 

 

 

 

 

 

Case 1: u and v are adjacent to the same node, w, 

in G2. 

 

 

 

 

 

 

 

 

 

 

 

However, w is a cut-point, and thus G is 1-

connected, which is a contradiction. 

Case 2: u and v are adjacent to two distinct nodes 

in G2. 

 

 

 

 

 

 

 

 

 

 

 

In this case, we can choose our cut set as {t,w} 

and force the order of G1 to be 5.  If t and w are 

adjacent, then we arrive at the same results. 

 

We conclude that G1 and G2 are of order at least 

5. 

  

CONCLUSION 

Hamiltonicity, Bauer, Broersma, and Veldman‗s 

result is demonstrated to be true for graphs on 

fewer than 16 nodes. Possible approaches for the 

proof of the n=16 and n=17 cases discussed.  
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