Measurement of Renal Length and Width in Healthy Adults and Their Association with Various Parameters

Subodh Kumar Yadav¹, Renu Yadav², Sunil Chakradhar³, Abhishek Karn⁴

¹Assistant Professor, Department of Human Anatomy, Nobel Medical College and Teaching Hospital, Biratnagar, Nepal; ²Assistant Professor, Department of Human Physiology, Nobel Medical College and Teaching Hospital, Biratnagar, Nepal; ³Lecturer, Department of Radiodiagnosis, Nobel Medical College and Teaching Hospital, Biratnagar, Nepal; ⁴Assistant Professor, Department of Forensic Medicine, Universal College of Medical Sciences and Teaching Hospital, Bhairahawa, Nepal.

ABSTRACT

Objective: To find out the renal length and width in the studied Nepali healthy individuals; to see whether they have any association with the age, gender, height, weight and BMI (Body Mass Index).

Methods: Ultrasonographic measurement of renal length and width were taken in 110 healthy persons (57 males and 53 females) who were screened for presence of any renal anomaly. Height and weight of these individuals were measured and BMI was calculated. The significance of linear association between variables was tested using Pearson’s correlation coefficient where p < 0.05 was considered significant and regression equation derived.

Results: The mean renal length for the right and left kidneys were 9.77 ± 0.98 cm and 9.94 ± 0.86 cm, respectively. The mean renal width for the right and left kidneys were 4.08 ± 0.63 cm and 4.18 ± 0.86 cm, respectively. The renal length had statistically significant association with the weight (p < 0.01) and BMI (p < 0.01) but not with the age, sex and height of the individuals.

Conclusions: The renal length and width in this population was lesser than the reference values in international literature and the renal length had significant association with the weight and BMI of the individual. Also, in forensic practice if a dismembered body with intact kidneys is found, estimation of the weight of the individual can be done in this population.

Key Words: Kidney, Ultrasonographic, Weight, Age, Gender

INTRODUCTION

The renal size is a vital diagnostic concern in urological and nephrologic practice when assessing patients likely to have renal disease. The standard anatomy text-books regards the adult kidney to be 12 cm long and 6 cm wide,¹ research articles however suggests the renal length and width to differ between ethnic groups and according to body size, age, gender and body mass indexes.²-⁷ Therefore, discerning the normal population specific reference values of normal kidney is imperative to assess any alterations that might happen in that population. Patients with renal problems typically go through ultrasonography of their kidneys which being simple, cost-effective, and harmless; having very petite interobserver changeability endows the doctor with crucial anatomical facets of the kidneys.⁸-¹¹ Renal length and width are significant clinical factors in the assessment of patients having various renal diseases,¹² still there are very few studies essentially devised to evaluate renal dimension in healthy adults without any renal disease.¹³,¹⁴ Nevertheless, few researchers have given the ultrasonographic reference values for renal length in healthy individuals¹⁵,¹⁶ but such studies are lacking in Nepal. Though population based large studies are needed to ascertain the normal reference values for Nepalese individuals, in this study we determined the ultrasonographic renal length and width in a group of healthy individuals with no known renal disease and assessed the effect of age, gender, height, weight and BMI which will be valuable radiologically while investigating renal disease in this population and forensically in cases where dismembered body parts are found and identification of the individual is to be made.

Corresponding Author:
Dr. Abhishek Karn, Assistant Professor, Department of Forensic Medicine, Universal College of Medical Sciences and Teaching Hospital, Bhairahawa, Nepal; Mob: +9779857015389; E-mail: dr.abhishekkarn@gmail.com

Received: 22.01.2017 Revised: 02.02.2017 Accepted: 13.02.2017
Yadav et.al.: Association of renal length and width with few parameters

MATERIALS AND METHODS

The ultrasonographic measurement of renal length and width were taken in 110 healthy persons aged 15-80 years from 1st October 2015 to 31st October 2016 who were screened for presence of any renal anomaly in the department of Radiology at Nobel Medical College and Teaching Hospital, Nepal. Ethical clearance was obtained from the Institutional Review Committee of Nobel Medical College. Only asymptomatic patients having normal serum creatinine level and normal calculated creatinine clearance using the Cockroft-Gault formula to establish the estimated glomerular filtration rate were chosen and individuals having any disease that could affect renal length and width were excluded. A general physical examination of these individuals was performed and vital parameters like respiratory rate, pulse rate, systolic and diastolic blood pressure recorded. The weight of the individuals was taken on a digital scale whilst dressed in an examination gown over undergarment, and height was measured using a wall-mounted measuring scale with the patient standing barefoot. Body Mass Index (BMI) was determined with the height and weight of the individuals.

Digital renal ultrasound was performed with a “SIEMENS ACUSON X 300 Ultrasound System” (Simens Healthineers). Highest frequency curved linear array probe possible was used and scanning was initiated with 7MHz and worked down upto 2 for hefty individuals. The depth of penetration required was evaluated and adapted. The renal dimensions measured include length (distance pole to pole) and width (transversal axis) in centimeters. All ultrasonographic assessments were carried out by one experienced radiologist to eliminate inter-observer disparity.

STATISTICAL METHOD:

The obtained data were statistically analyzed using the SPSS® for Windows, Version 17.0. Continuous variables means were evaluated using the Student t test. Regression equations and coefficients of correlation were obtained for each pair of variables. In order to find the association of renal length and width of the individual with age, gender, height, weight and BMI, the significance of linear association between variables was tested using Pearson’s correlation coefficient where p < 0.05 was considered significant.

RESULTS

Out of the entire 110 individuals, 57 were males and 53 females. The mean age was 35.58 ± 15.45 years; 37.66 ± 17.44 years for males and 33.33 ± 12.76 years for females. The mean right kidney length was 9.77 ± 0.98 cm and that for left was 9.94 ± 0.86 cm. The mean right kidney width was 4.08 ± 0.63 cm and that for left was 4.18±0.86 cm. When the observed parameters were compared between males and females (Table 1), it was found that the only parameters to show significant differences were weight and height. Though not significantly, but the length of female kidneys were lesser than the male kidneys.

Table 1: Various parameters in total subjects, males and females.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Total (n=110)</th>
<th>Male (n=57)</th>
<th>Female (n=53)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age (years) ± STDEV</td>
<td>35.58±15.45</td>
<td>37.66 ± 17.44</td>
<td>33.33 ± 12.76</td>
<td>n.s.</td>
</tr>
<tr>
<td>Mean RK Length (cm.) ± STDEV</td>
<td>9.77±0.98</td>
<td>9.88 ± 1.01</td>
<td>9.63 ± 0.94</td>
<td>n.s.</td>
</tr>
<tr>
<td>Mean LK Length (cm.) ± STDEV</td>
<td>9.94±0.86</td>
<td>9.97 ± 0.77</td>
<td>9.89 ± 0.96</td>
<td>n.s.</td>
</tr>
<tr>
<td>Mean RK Width (cm.) ± STDEV</td>
<td>4.08±0.63</td>
<td>4.06 ± 0.63</td>
<td>4.09 ± 0.63</td>
<td>n.s.</td>
</tr>
<tr>
<td>Mean LK Width (cm.) ± STDEV</td>
<td>4.18±0.86</td>
<td>4.1 ± 0.95</td>
<td>4.21 ± 0.75</td>
<td>n.s.</td>
</tr>
<tr>
<td>Mean Height (cm.) ± STDEV</td>
<td>160±6.75</td>
<td>167 ± 6.8</td>
<td>153 ± 6.7</td>
<td><0.0001*</td>
</tr>
<tr>
<td>Mean Weight (cm.) ± STDEV</td>
<td>73.04±12.13</td>
<td>78.45 ± 11.92</td>
<td>67.26 ± 9.44</td>
<td><0.0001*</td>
</tr>
<tr>
<td>Mean BMI± STDEV</td>
<td>28.5±9.5</td>
<td>28.9 ± 5.4</td>
<td>28.1 ± 6.6</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

n = Total number; STDEV = Standard Deviation; RK = Right Kidney; LK =Left Kidney; n.s. = not significant

Statistical significant difference in kidney length and width between right and left side was not found. The right and left renal length had a significant correlation with weight (for right kidney R score = 0.32, p < 0.01; for left kidney R score = 0.81, p < 0.01) but not with height (R score = 0.18, p = 0.059) and age (R score = 0.02, p = 0.86). Fig.1 and Fig. 2 shows scatter diagrams of mean right and left renal length with body weight respectively. The left renal length had more significant correlation with weight as compared to left renal length’s correlation with weight. The BMI being dependent
on body weight, showed a correlation with renal length (p < 0.05). Linear regression equations for predicting variable (renal length) from independent variable (body weight) were obtained as follows:

Right Renal Length = 0.025 × Body weight + 7.887; and
Left Renal Length = 0.058 × Body weight + 5.703.

The finding that there is no significant difference in renal length between males and females is consistent with other studies. Though, some studies reveal renal length to be greater in males but statistically significant difference will not be found if males and females of comparable body weights are analyzed.

A preliminary study done in Nepalese population found the length and width of the right kidney to be 85.25 ± 10.7mm. and 50.65 ± 5.8mm. and that of the left 91.65 ± 9.2mm. and 53.65 ± 5.2mm. respectively. Our finding is not in accordance with this study because this study was done in normal-appearing formalin-preserved adult kidneys using a sliding caliper for measuring the length and width.

In our study, the height of the person had no correlation with renal length. The limitation of our study was that it did not reflect on parameters like race, culture, ethnicity and socioeconomic status, and owing to the small sample size, our study does not represent the whole Nepalese population. Population-based larger studies are required to ascertain the normal values for Nepalese.

CONCLUSION

This study has given measurements of normal renal length and width in the studied Nepali population. We state that the mean renal length and width in this population was lesser than the reference values presented in international literature and the renal length increased significantly with the weight and BMI of the individual. Renal length can be estimated quickly by measuring the body weight and applying our regression equation even in the absence of ultrasonographic facilities in rural areas. Also, in forensic practice if a dismembered body with intact kidneys is found, we can estimate the weight of the individual in this population which will help in the identification of that individual. A large population based study is required to ascertain reference ranges of renal dimension in Nepal.

ACKNOWLEDGEMENT

Authors acknowledge the immense help received from the scholars whose articles are cited and included in references
of this manuscript. The authors are also grateful to authors/editors/publishers of all those articles, journals and books from where the literature for this article has been reviewed and discussed.

Ethical Clearance

Ethical clearance was obtained from the Institutional Review Committee of Nobel Medical College and Teaching Hospital, Biratnagar-5, Morang.

Source of Funding

None declared.

Conflict of interest

None declared.

REFERENCES