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ABSTRACT

Objective: The objective is to obtain the stresses due to strip loading in orthotropic plate lying over an irregular isotropic elastic

medium.

Methods: Anti-plane strain problem with perfect bonding boundary conditions following by Fourier Transformation on the equi-

librium equation are used to obtain the solution.

The deformation field due to shear line load at any point of the medium consisting of an orthotropic elastic layer lying over an
irregular isotropic elastic medium is obtained. The anti-plane strain problem with the presence of rectangular irregularity is con-
sidered. In order to study the effect of irregularity present in the medium and of anisotropy of the layer, we computed shearing

stresses in both the media graphically.
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INTRODUCTION

It is well known that the upper part of the Earth is recognized
as having orthorhombic symmetry. Orthorhombic Symmetry
is also expected to occur in sedimentary basins as a result of
combination of vertical cracks with a horizontal axis of sym-
metry and periodic thin layer anisotropic with a vertical sym-
metry axis. When one of the planes of symmetry in an or-
thorhombic symmetry is horizontal, the symmetry is termed
as orthotropic symmetry and most symmetry systems in the
Earth crust also have orthotropic orientations (Crampin').

The problem of deformation of a horizontally layered elastic
material due to surface loads is of great interest in geoscienc-
es and engineering. In material science engineering, the ap-
plications related to laminate composite material are increas-
ing. Many works related to Earth, such as fills or pavements
consist of layered elastic medium. When the source surface is
very long, then a two-dimensional approximation simplifies
the algebra and one can easily obtain a closed form analyti-
cal solution. The deformation field around mining tremors
and drilling into the crust of the Earth can be analyzed by the
deformation at any point of the media due to strip-loading. It
also contributes for theoretical consideration of volcanic and

seismic sources as it account for the deformation fields in the
entire medium surrounding the source region. It may also
find application in various engineering problems regarding
the deformation of layered isotropic and anisotropic elastic
medium (Garg et al?, Singh et al®).

The study of static deformation with irregularity present
in the elastic medium due to continental margin, mountain
roots etc is very important to study. Chattopadhyay*, Kar et
al, De Noyer®, Mal’, Acharya and Roy?® discussed the prob-
lems with irregular thickness. Love® provided the solution of
static deformation due to line source in an isotropic elastic
medium. Salim'® studied the effect of rectangular irregularity
on the static deformation of initially stressed and unstressed
isotropic elastic medium respectively. The distribution of the
stresses due to strip-loading in a regular monoclinic elastic
medium had been studied by Madan et al'!. The effect of
rigidity and irregularity present in fluid-saturated porous
anisotropic single layered and multilayered elastic media on
the propagation of Love waves had been analyzed by Madan
et al'? and Kumar et al respectively. Recently, Madan and
Gabba'* studied two-dimensional deformation of an irregular
orthotropic elastic medium due to normal line load.
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In this paper, we have obtained the closed-form expressions
for the displacement and shearing stresses in a horizontal or-
thotropic elastic plate of an infinite lateral extent lying over
an irregular isotropic base due to strip-loading. Numerically,
at different sizes of irregularity, we have studied the varia-
tions of shearing stresses with horizontal distance and it has
been observed that the shearing stresses show significant
variation with horizontal distance at the different depth lev-
els.

PROBLEM FORMULATION

Consider a horizontal orthotropic elastic plate of thickness H
lying over an infinite isotropic elastic medium with x —axis
vertically downwards. The origin of the Cartesian coordinate
system (x,, x,, x,) is taken at the upper boundary of the plate.
The orthotropic elastic plate occupies the region () < x, <H

and is described as Medium I whereas the region x, > H is
the isotropic elastic half space over which the plate is lying
and is described as Medium II. (Fig. 1)

Suppose a shear load P per unit area is acting over the strip
| x, |< h of the surface x, = 0 in the positive x —direction. The

boundary condition at the surface x, = 0 is

. —Plx,|<h
W) 0)x, b A 1

The irregularity is assumed to be rectangular with length 2a
and depth d. The equation of the rectangular irregularity may
be represented as

d|x,|<a
0|x,>a )

X =£f(x2)=

d . .
where £= By << is the perturbation factor.
a

THEORY
The equilibrium equations of Cartesian coordinate system

(x17x27x3) for zero body force are

O+ T, + 1553 = 0 A3)

_ 4
Tt 0y, 7555 = 0 )
Tt Tyt 055 = 0 %)

where 0,,0,,0; are normal stresses and T1os T3> Taps T3y T315 T3
are called shearing stresses.

The stress-strain relations for- an orthotropic elastic medium

with co-ordinate planes as planes of elastic symmetry are

0, =C e +Che, +Ce; |
0, =Cye+Cyhe, +Cre
0, =Ce+Cpe, +Ciey
7, = 2C ey
75 = 2Ce;

(6)
7, =2Cxe,

where e,e,,e, are normal strain components and €,,€,€;;

are normal strain components. The suffices ¢, (i, =1,2,3,4,5,6)
are stiffnesses of an orthotropic elastic material.

The strain - displacement relations are given as

1/0 a a
e = 5(£+ ﬁ) and e = 6’;1, etc. 7)
In terms of displacement components, the equilibrium equa-
tions can be written from equations (3) — (7) as :

62
-+ (Cy3 + Css) axlz; =0

92 ul 92 uz

Co6 57 + Css Py 2 F+(Crp + Cae)
3)

a2
+C44 P z E(C3 + Caa) === 0

0x30x
®

0%u 9%u
6+Clz)0x o5, T Co6 57 F+Cn 7

Bzu1

a2 92
+ (Cag + Cp3) 2+ Css " z +C44 = 7 G352 =0

(10)

dx10x3 dxq 0x

Consider the field equation of an orthotropic material in anti
— plane strain equilibrium state as:

u =u; =0, uz=uz(x,x2); (11)
The non-zero stresses for an anti
state are

— plane strain equilibrium

(12)

a
T31 = Css a_:
(13)

u
T3z = Cyq s

Equilibrium Equations for an orthotropic elastic medium due

to anti — plane strain deformation are found to be
92%u3 2 02uz _
ax} 0x% =0 (14)
wherem = |4
Css
At the interface (y, x = €f (y)), the boundary conditions are:
1oul=uf.
2. thy —ief thy = o) — ief ()Thh (15)
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By using the boundary condition (15), we find the deforma-
tion field at any point of the orthotropic elastic plate corre-
sponding to irregular contact between the orthotropic plate
and the isotropic elastic half space due to strip-loading.

Taking the Fourier transform of the equilibrium equation
(14), we get

d2a} o (Cas . di _ Cagp2] _ (16)
dx? 2 (055 lk) dx; Css ka3 =0
The solution of the ordinary differential equation is
where C, and C, may be functions of k
By using inverse Fourier transform, we have
wh =L [7 (Cremkin - remmikbayetakak  (18)

Using equation (12), (13) and (18), the shear stresses are

(19)

T, .
= ifjow((:lemlklm - Cze—mlklxl)e—txzklkldk

= ;—;[—im fj;(clemlklm + Cze—mlklxl)e—ixzkkdk]

(20)

Where T, = mCss = \/CiuCss. U. Using the boundary condition
(1), we have

#hy = —Zsinkh 1)
Therefore
th = —2[" (B)eikndk (22)
From (19) and (21), we obtain
Goa--EEH @

The displacement in the isotropic elastic half space x; > H is

ull = %f_ww Cye " klx1gixak g (24)

The coefficient ¢, is to be determined from the boundary
conditions.

From equations (12), (13) and (17), we obtain

thh = =L [ Crelxiemtnak ||k (25)
thhy = =L 7 Crelbeminakkdk (26)

Equations (15), (18), (19), (20), (24), (25) and (26) yield the
relation

CemIkIfO) 4 Ce=mIkIf D) = Cle~eklfG)  (27)

T (k' - mef'(y)) CresmIklfo) — (k' + msf'(y)) Cpe~emIkIfO) 4 (k' + sf'(y)) CyeeikIf o)

(28)
T; ' k
where T = Land k' =0,
m k
Solving (23), (27) and (28), we get
. = ZPsinkh (k'+ef (y)v?)e—2em IkIf @)y (29)
17 ik \k'(v=—e—2emKIFO))—e £ (y)V (1+¢ 2 KIF 0D
C, = 2hsinkh (k' +ef )v)e=2em KIF 0y
1 - —ef| —2em
2 Tik|k| k'(V—e=2emIkIfO))—ef '(y)V ' (1+e~2em KIF () (30)
) = psinkh ( k'(+Vv) )e,g(m,l)‘kwy)
2 Tiklk| \k'(V—e=2emKIfO))—gf (y)V ' (1+e~2em IkIf 01))
€2))

where V = (T —1)/(T + 1).

PROBLEM SOLUTION

By applying Fourier Transformation technique on equation
(2) we obtained

4a

f) =% sin(ka) (32)

Therefore, by using inverse transformation, we have

f) = %sin(ka) e v dk = sign(a — x;) + sign(a + x;) (33)
where is the signum function.

By substituting the values of constants C,C, and C{ from
equations (29), (30), (31) in the equations (18), (19), (20)
for Medium I and in (24), (25), (26) for Medium II and also,
substituting the value of f(y) for rectangular irregularity from
equation (33), we obtain the following expressions for dis-
placement and stresses.

For Med. 1

» . . PR
ul :ﬁf:c s‘k"\kl {(1 +Zn:1V"em‘k‘(2"€(“""(u xz)+szgn(a+xz)))) (emhin 4

(34)

Ve—m\klxl)} e-ikx

2h
(1+V)tan™! ( ma )

P
1
h== o
E xZ + m2x? — h?

+

M

- itan" ( 2hm(2ne(sign(a — x,) + sign(a + x,)) + x;) )
x2 +m2(2ne(sign(a — x) + sign(a +x)) +x,)° — h
Vtan! ( th(Zns(sign(a —x3) + sign(a + xz)) - xl) )”
x} + m2(2ne(sign(a — x,) + sign(a + x,)) — Xl)z — h?

n

(35)

(h +x)? + m?x}

1+V)log———m———
a+ )Og(h—xz)z+m2x12

_ i o {log (h + x;)% + m?(2ne(sign(a — x,) + sign(a + x2)) + xl)z
= (h = x;)% + m2(2ne(sign(a — x,) + sign(a + x2)) + x;)

(h + x) + m?(2ne(sign(a — x,) + sign(a + x)) — xl)z}

(h = x2)? + m2(2ne(sign(a — x,) + sign(a + x)) — x1)2 ]

(36)

+Vlog

|
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For Med. 11

i
P [sinkh
=~ | ki (1+V)(1

+ Z Y g2mne [k (sign (a—x;)+sign (mz))) I(m+1)e(sign (a—x2)tsign (a+x2))=x1) iy g
n=1
37

1
T31

Pu
__n_Tl(1+V)

2h ((m + De(sign(a — x;) + sign(a + x;)) — xl)
tan~! >
X2+ ((m + De(sign(a — x;) + sign(a + x,)) — xl) — h?
. Z": - 2h ((Zm(n +1) + De(sign(a — x,) + sign(a + x;)) — x;)
n=1 xZ + ((Zm(n +1) + De(signla — x,) + sign(a + x;)) — xl) —h?
(38)

=271 &

(h+x,)% + ((m + De(sign(a — x;) + sign(a + x;)) — xl)z

+V) |log

(h—x3)% + ((m + 1)£(sign(a —x;) +sign(a + xz)) - xl)z

+ Z V™ lo 3
=1 (h—x)2 + ((Zm(n +1) + De(sign(a — x,) + sign(a + x)) — xl)

(39)

(h+x)% + ((Zm(n +1) + De(sign(a — x,) + sign(a + x)) — xl)z]
g

NUMERICAL RESULTS AND DISCUSSION

In this section, we intend to examine the effect of irregularity
on the stresses due to shear line load acting at any point of
the orthotropic elastic layer lying over an irregular isotropic
half space. For numerical computation, we use the values of
elastic constants of Topaz (Orthotropic) for Medium I and
the values of elastic constants of Glass (Isotropic) for Me-
dium IT given by Love’.

Figures (2)-(4) and Figures (5)-(7) show the variation of
shearing stresses 1-3’1 and 1’3’2 respectively, with horizon-
tal distancefor different values of ¢=1,1.2,1.4,1.6 and for
different depth levels x, = 0.5,1,1.5 . Figures (5)-(7) clearly
show that for different values of, the difference between
shearing stresses in magnitude significantly decreases as the
depth increases.

Figures (8)-(10) and Figures (11)-(13) show the variation of
shearing 1'3111 and 1'3”2 respectively with horizontal distance-

for x, different values of @ =1,1.2,1.4,1.6. It has been found
from the Figures (8)-(10) that for different values of a, the

. . . 7 . .
difference between shearing stresses in 1'31 |, magnitude sig-
nificantly increases as the depth increases.

CONCLUSIONS

The explicit expressions for the shearing stresses in an elas-
tic medium consisting of orthotropic elastic layer lying over
an irregular isotropic half space due to shear loading has
been obtained. The results obtained are useful to study the
static deformation around mining tremors and drilling into
the crust of the Earth. The results are also useful to study the

effect of irregularity present between the layer and the half-
space. Graphically, it has been observed that the difference
between the shearing stresses in magnitude in orthotropic
elastic layer decreases as depth increases due to irregularity
present.

Further, it has also been observed that in isotropic semi-
infinite half-space, the difference between the stresses in
magnitude increases with the increase of depth. Thus, it has
been concluded that the stress distribution in a layer with ir-
regularity present at the interface is affected by not only the
presence of irregularity but also by anisotropy of the elastic
medium as a result of shear load acting over the strip of an
orthotropic elastic medium.
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Figure 4: Variation of the Shearing Stress 7., in Med. | with
the horizontal distance x, at x,= 1.5.
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Figure 5: Variation of the Shearing Stress 2'3]2
the horizontal distance x, at x,= 0.5.
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Figure 3: Variation of the Shearing Stress 7., in Med. | with
the horizontal distance x, at x,= 1.
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Figure 6: Variation of the Shearing Stress T;fz in Med. | with
the horizontal distance x, at x,= 1.
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Figure 7: Variation of the Shearing Stress 1'312 in Med. | with
the horizontal distance x, at x,= 1.5.
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Figure 8: Variation of the Shearing Stress 7 in Med. Il with
the horizontal distance x, at x,= 0.5.
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Figure 9: Variation of the Shearing Stress 7 in Med. Il with
the horizontal distance x, at x,= 1.
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Figure 10: Variation of the Shearing Stress 7.' in Med. Il with
the horizontal distance x, at x,= 0.5.
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Figure 11: Variation of the Shearing Stress 7., in Med. Il with
the horizontal distance x, at x,= 0.5.
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Figure 12: Variation of the Shearing Stress 7., in Med. Il with
the horizontal distance x, at x,= 1.
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Figure 13: Variation of the Shearing Stress 7., in Med. Il with
the horizontal distance x, at x,= 1.5.
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